タグ「数列」の検索結果

10ページ目:全826問中91問~100問を表示)
龍谷大学 私立 龍谷大学 2016年 第2問
次の条件によって定められる数列$\{a_n\}$を考える.
\[ a_1=1,\quad a_2=0,\quad a_{n+2}-a_n=3 \quad (n=1,\ 2,\ 3,\ \cdots) \]
また,$b_n=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$とおく.

(1)$b_1$を求めなさい.また,$b_{n+1}$を$b_n$で表しなさい.
(2)数列$\{b_n\}$の一般項を求めなさい.
(3)数列$\{a_n\}$の一般項を求めなさい.
東邦大学 私立 東邦大学 2016年 第13問
数列$\{a_n\}$は,$n=1,\ 2,\ 3,\ \cdots$で次の等式を満たしている.
\[ n \cdot a_1+(n-1) \cdot a_2+(n-2) \cdot a_3+\cdots +2 \cdot a_{n-1}+1 \cdot a_n=\frac{n-4}{10}+\frac{2}{n+5} \]
このとき,
\[ \lim_{n \to \infty} (a_1+a_2+a_3+\cdots +a_{n-1}+a_n)=\frac{[オ]}{[カキ]} \]
であり,
\[ \lim_{n \to \infty} \biggl\{ 2 \cdot a_1+5 \cdot a_2+8 \cdot a_3+\cdots +(3n-4) \cdot a_{n-1}+(3n-1) \cdot a_n \biggr\}=\frac{[ク]}{[ケ]} \]
である.
東京女子大学 私立 東京女子大学 2016年 第6問
初項が$3$である数列$\{a_n\}$と,その階差数列$\{b_n\}$が,すべての自然数$n$に対して,条件$a_n-b_n=-1$をみたしている.このとき,以下の設問に答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$a_n \leqq 99999999$となる最大の$n$を求めよ.$\log_{10}2=0.3010$は用いてよい.
昭和薬科大学 私立 昭和薬科大学 2016年 第1問
次の問いに答えよ.

(1)赤球と白球を合わせて$13$個の球が入っている袋から同時に$2$個の球を取り出す.$2$個の球が同じ色である確率が$\displaystyle \frac{7}{13}$であるとき,この袋には$[ア]$個の赤球が入っている.ただし,赤球の個数は白球の個数より多いとする.
(2)$\triangle \mathrm{ABC}$は$\mathrm{AB}=\mathrm{AC}$の二等辺三角形であり,$\mathrm{BC}=2$とする.$\triangle \mathrm{ABC}$の面積が$2 \sqrt{2}$のとき,$\displaystyle \cos A=\frac{[イ]}{[ウ]}$である.
(3)不等式$\sqrt{(x+2)^2}+\sqrt{(2x-3)^2} \leqq 4$の解は$\displaystyle [エ] \leqq x \leqq \frac{[オ]}{[カ]}$である.
(4)分母が$12$である正の既約分数を値が小さい順に並べた数列
\[ \frac{1}{12},\ \frac{5}{12},\ \frac{7}{12},\ \frac{11}{12},\ \frac{13}{12},\ \cdots \]
の初項から第$n$項までの和を$S_n$とすると,$S_4=[キ]$及び$S_8=[ク]$であり,

$\displaystyle S_{39}=\frac{\kakkofour{ケ}{コ}{サ}{シ}}{[ス][セ]}$である.
(5)$\displaystyle \left( \displaystyle\frac{1}{45} \right)^{100}$を小数で表したとき,小数第$[ソ][タ][チ]$位に初めて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(6)$x$の関数$\displaystyle f(x)=\int_1^x y^2(y-3) \, dy$は$x=[ツ]$のとき最小値$[テ][ト]$をとる.
中京大学 私立 中京大学 2016年 第5問
条件$\displaystyle a_1=\frac{2}{5}$,$\displaystyle \frac{1}{a_{n+1}}-\frac{1}{a_n}=\frac{2n+7}{6} (n=1,\ 2,\ 3,\ \cdots)$で定められる数列$\{a_n\}$がある.このとき,$\displaystyle a_n=\frac{[ア]}{n^2+[イ]n+[ウ]}$であり,$\displaystyle \sum_{n=1}^{16} a_n=\frac{[エ][オ][カ]}{[キ][ク]}$である.
千葉工業大学 私立 千葉工業大学 2016年 第4問
$x$の$2$次関数$f_1(x),\ f_2(x),\ \cdots,\ f_n(x),\ \cdots$を条件

$f_1(x)=x^2-5x,$

$\displaystyle f_{n+1}(x)=x^2 \int_0^2 \{ t{f_n}^\prime(t)-f_n(t) \} \, dt+x \int_0^2 f_n(t) \, dt \quad (n=1,\ 2,\ 3,\ \cdots)$

により定める.さらに,数列$\{a_n\}$,$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を
\[ f_n(x)=a_nx^2+b_nx \]
により定める.このとき,次の問いに答えよ.

(1)${f_n}^\prime(x)=[ア]a_nx+b_n$であり,数列$\{a_n\}$,$\{b_n\}$は
\[ a_{n+1}=\frac{[イ]}{[ウ]}a_n,\quad b_{n+1}=\frac{[エ]}{[オ]}a_n+[カ]b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたす.
(2)$\displaystyle a_n=\left( \frac{[キ]}{[ク]} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$であり,$\displaystyle c_n=\frac{b_n}{{[カ]}^{n-1}}$とおくと,$\displaystyle c_{n+1}-c_n=\left( \frac{[ケ]}{[コ]} \right)^n (n=1,\ 2,\ 3,\ \cdots)$が成り立つ.
(3)$\displaystyle f_n(x)=\left( \frac{[キ]}{[ク]} \right)^{n-1}x^2+\left\{ [サ] \cdot \left( \frac{[シ]}{[ス]} \right)^{n-1}-[セ] \cdot {[ソ]}^{n-1} \right\} x$
である.
(4)$x$の方程式$f_n(x)=0$の$x=0$とは異なる解を$x=p_n$とする.不等式$p_n>M$がすべての正の整数$n$に対して成り立つような定数$M$のうち,最大の整数は$M=[タチ]$であり,$[タチ]<p_n<[タチ]+1$となるような最小の$n$は$[ツ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
福岡大学 私立 福岡大学 2016年 第2問
次の$[ ]$をうめよ.

(1)方程式$\log_2 (5-x)=\log_8 (x^2-15)$を解くと$[ ]$である.また,変数$a,\ b$が$\log_9 a=(\log_3 b)^2$をみたすとき$\displaystyle \left( \frac{a}{b} \right)^8$の最小値は$[ ]$である.
(2)$a_1=-30$,$a_{n+1}-a_n=-2n+18$で定められる数列$\{a_n\}$について,$a_n>0$である$n$の個数を求めると$[ ]$であり,$\displaystyle S_n=\sum_{k=1}^n a_k$の最大値を求めると$[ ]$である.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
玉川大学 私立 玉川大学 2016年 第2問
次の$[ ]$を埋めよ.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$であるとする.$\mathrm{CA}=x$とおくとき,
\[ \cos \angle \mathrm{BAC}=\frac{[ア]+x^2}{[イ]x} \]
である.$\angle \mathrm{BAC}$の最大は,${[ウエ]}^\circ$であり,このとき,$x=[オ]$である.
(2)$1 \leqq x \leqq 100$とする.このとき,方程式$2x+3y=31$をみたす整数の組$(x,\ y)$の個数は,$[カキ]$個で,$x$が最小となる解は,$(x,\ y)=([ク],\ [ケ])$である.
(3)方程式
\[ 2 \sin^3 x+\cos 2x-\sin x=0 \]
を解くと,$n$を任意の整数として
\[ x=\frac{\pi}{[コ]}+2n \pi,\ \frac{\pi}{[サ]}+\frac{1}{[シ]}n \pi \]
となる.
(4)$2$つのベクトルを$\overrightarrow{a}=(t,\ -1)$,$\overrightarrow{b}=(t+\sqrt{2}-1,\ \sqrt{2})$とする.このとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が鋭角になる条件は,
\[ t>[ス],\quad t<-\sqrt{[セ]} \]
であり,鈍角になる条件は,
\[ -\sqrt{[ソ]}<t<[タ] \]
である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n^2+n$で表されるとき,
\[ a_n=[チ]n \]
である.また,
\[ \sum_{k=1}^n (a_k+1)^2=\frac{n}{[ツ]} ([テ]n^2+[トナ]n+[ニヌ]) \]
である.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
スポンサーリンク

「数列」とは・・・

 まだこのタグの説明は執筆されていません。