タグ「数列の和」の検索結果

50ページ目:全498問中491問~500問を表示)
津田塾大学 私立 津田塾大学 2010年 第1問
数列$\{a_n\}$を$a_1=1$,$a_2=2$,$a_n=a_{n-1}+a_{n-2} (n=3,\ 4,\ 5,\ \cdots)$により定義すると,$a_n$は整数である.次の問いに答えよ.

(1)この数列の連続する$3$項の和は常に偶数であることを示せ.
(2)$\displaystyle S_n=\sum_{j=1}^n (-1)^j a_j=-a_1+a_2- \cdots +(-1)^na_n$とおくと,$S_n=(-1)^n a_{n-1} (n=2,\ 3,\ 4,\ \cdots)$が成り立つことを示せ.
星薬科大学 私立 星薬科大学 2010年 第6問
数列$\{a_n\},\ \{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を

$\displaystyle \{a_n\}:\frac{4}{1 \cdot 2},\ \frac{4}{2 \cdot 3},\ \frac{4}{3 \cdot 4},\ \frac{4}{4 \cdot 5},\ \cdots$

$\displaystyle \{b_n\}:\frac{9}{1 \cdot 2 \cdot 3},\ \frac{16}{2 \cdot 3 \cdot 4},\ \frac{23}{3 \cdot 4 \cdot 5},\ \frac{30}{4 \cdot 5 \cdot 6},\ \cdots$

として次の問いに答えよ.

(1)各数列の一般項は$\displaystyle a_n=\frac{4}{n(n+1)},\ b_n=\frac{[ ] n+[ ]}{n(n+1)(n+2)}$である.
(2)$\displaystyle S_n=\sum_{k=1}^n a_k,\ T_n=\sum_{k=1}^n b_k$とすると,
\[ S_n=\frac{[ ] n}{n+1},\quad T_n=\frac{[ ] n^2+[ ] n}{(n+1)(n+2)} \]
である.
(3)$\displaystyle S_n-T_n<\frac{1}{4}$を満たす自然数$n$の最小値は$[ ]$である.
高知工科大学 公立 高知工科大学 2010年 第3問
関数列
\[ f_n(x)=x^{n-1},\quad g_n(x)=\sum_{k=1}^n (-1)^{k-1}f_k(x) \quad (n=1,\ 2,\ \cdots) \]
について,次の各問に答えよ.

(1)$\displaystyle F_n(x) = \int_0^x f_n(t) \, dt$を求めよ.
(2)$\{g_n(x)\}$が数列として収束するための実数$x$の条件を求めよ.また,$x$がこの条件を満たすとき$\displaystyle g(x)=\lim_{n \to \infty}g_n(x)$とおく.
\[ \int_0^x g(t) \, dt \]
を求めよ.
(3)(1)の$F_n(x)$について
\[ -F_{n+1}(1) \leqq \int_0^1 \frac{(-1)^n f_{n+1}(t)}{1+t} \, dt \leqq F_{n+1}(1) \]
が成り立つことを証明せよ.
(4)無限級数
\[ 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +(-1)^{n-1} \frac{1}{n}+\cdots \]
の収束,発散について調べ,収束すればその和を求めよ.
京都府立大学 公立 京都府立大学 2010年 第4問
$A$を成分が実数である2次の正方行列,$E$を2次の単位行列とする.数列$\{a_n\}$を漸化式
\[ a_1=1,\quad a_{n+1}=a_n+2^n,\quad (n=1,\ 2,\ \cdots) \]
によって定める.$\displaystyle b_n=\sum_{k=1}^n a_k$とおく.また,座標平面上の点P$_n(x_n,\ y_n)$を
\[ \biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr) = \biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr),\quad \biggl( \begin{array}{c}
x_{n+1} \\
y_{n+1}
\end{array} \biggr)=A^{b_n}\biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr),\quad (n=1,\ 2,\ \cdots) \]
によって定める.以下の問いに答えよ.

(1)数列$\{b_n\}$の一般項を求めよ.
(2)$A$は$\sqrt{2}A^2=(1+\sqrt{3})A-\sqrt{2}E$を満たすとする.$A$の逆行列$A^{-1}$が存在することを示せ.
(3)(2),かつ,$\displaystyle x_2=\sqrt{\frac{1}{2}},\ y_2=\sqrt{\frac{3}{2}}$のとき,$x_3,\ y_3$を求めよ.ただし,$A^{-1}$が存在することを証明なしに用いてよい.
(4)(3)のとき,$x_{n+1}=x_1,\ y_{n+1}=y_1$となる最小の自然数$n$を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第3問
座標平面上において,点$(x,\ y)$から点$(x+1,\ y)$または点$(x,\ y+1)$への移動をN型移動といい,点$(x,\ y)$から点$(x+1,\ y+1)$への移動をS型移動という.$n$を3以上の整数とする.原点Oから出発し,$2n-2$回のN型移動と1回のS型移動を組合せて点$(n,\ n)$に到達する径路の総数を$A(n)$とする.また,このような径路のうち,S型移動を$k$回目の移動として含む径路の総数を$B(n,\ k)$とする.このとき,次の問いに答えよ.

(1)$A(3)$を求めよ.
(2)$B(4,\ 1),\ B(4,\ 2)$をそれぞれ求めよ.
(3)$B(n,\ 1)$を$n$を用いて表せ.
(4)一般の$k=1,\ 2,\ 3,\ \cdots,\ 2n-1$に対して,$B(n,\ k)$を$n,\ k$を用いて表せ.
(5)$A(n)$を$n$を用いて表せ.

ただし,$p,\ q,\ r$を非負の整数とし,$p \leqq q \leqq r$とするとき,
\[ \sum_{i=0}^p \comb{p}{i} \cdot \comb{r}{q-i}=\comb{p+r}{q} \]
が成り立つことを用いてもよい.
高知工科大学 公立 高知工科大学 2010年 第4問
$r$と$\theta$を$-1<r<1,\ 0 \leqq \theta < 2\pi$を満たす定数とする.行列$A=r \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対して,次の各問に答えよ.

(1)行列$E-A$は逆行列を持つことを証明し,$(E-A)^{-1}$を求めよ.
(2)全ての自然数$n$について
\[ A^n=r^n \left( \begin{array}{rr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array} \right) \]
が成立することを数学的帰納法を用いて証明せよ.
(3)$n$を2以上の自然数とする.$(E+A+\cdots +A^{n-1})(E-A)$を簡単な式にせよ.
(4)次の極限値を求めよ.
\[ ① \quad \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \cos k\theta ② \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \sin k\theta \]
九州歯科大学 公立 九州歯科大学 2010年 第1問
次の問いに答えよ.

(1)$(\log_5 7+\log_{25}7) \log_7 x=6$をみたす$x$の値を求めよ.
(2)$2$次方程式$x^2+8x+c=0$の$2$つの解を$\alpha,\ \beta$とする.$\displaystyle \sum_{k=1}^\infty (\alpha-\beta)^{2k}=3$のとき,定数$c$の値を求めよ.
(3)袋の中に青球$5$個,緑球$4$個,黄球$2$個,赤球$2$個,白球$2$個,黒球$1$個が入っている.この袋にさらに$n$個の赤球と$5-n$個の白球を加える.この袋から同時に$2$個の球を取り出すとき,取り出された$2$個の球が同じ色でない確率が$\displaystyle \frac{5}{6}$となる$n$の値を求めよ.
九州歯科大学 公立 九州歯科大学 2010年 第3問
$\displaystyle I_n=\int_0^c \sin^n x \cos^5 x \, dx$,$\displaystyle J_n=\int_0^c \sin^n x \cos x \, dx$,$K_n=J_n-J_{n+2}$とおくとき,次の問いに答えよ.ただし,$n$は自然数であり,$c$は正の定数である.

(1)$I_n$を$K_n$と$K_{n+2}$を用いて表せ.
(2)$\displaystyle A_n=\sum_{m=1}^n I_m$を$K_1,\ K_2,\ K_{n+1},\ K_{n+2}$を用いて表せ.
(3)$\displaystyle c=\frac{\pi}{2}$のとき,$\displaystyle K_n=\frac{2}{(n+a_1)(n+a_2)}$となる定数$a_1$と$a_2$を求めよ.ただし,$a_1<a_2$とする.
(4)$\displaystyle c=\frac{\pi}{2}$のとき,$\displaystyle \lim_{n \to \infty} \alpha(A_n+\beta)n^2=1$となる定数$\alpha$と$\beta$を求めよ.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。