タグ「数列の和」の検索結果

5ページ目:全498問中41問~50問を表示)
岩手大学 国立 岩手大学 2016年 第4問
数列$\{a_n\}$が,
\[ a_1=1,\quad \frac{(1-a_{n+1})a_n}{a_{n+1}}=\frac{a_{n+1}}{(1+a_{n+1})a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとき,次の問いに答えよ.ただし,すべての自然数$n$について$a_n>0$とする.


(1)数列$\{b_n\}$が$\displaystyle b_n=\frac{1}{{a_n}^2}$で与えられるとき,$b_2,\ b_3,\ b_4$の値を求めよ.

(2)数列$\{a_n\}$の一般項を求めよ.

(3)不等式$\displaystyle \int_1^{n+1} \frac{1}{\sqrt{x}} \, dx < \sum_{k=1}^n a_k$が成り立つことを示せ.
岩手大学 国立 岩手大学 2016年 第3問
次の問いに答えよ.

(1)ユークリッドの互除法を用いて,$89$と$29$の最大公約数を求めよ.
(2)$2$元$1$次不定方程式$89x+29y=1$の整数解を$1$組求めよ.
(3)$2$元$1$次不定方程式$89x+29y=-20$の整数解として現れる$x$の値のうち,正のものを小さい順に$x_1,\ x_2,\ x_3,\ \cdots$とする.このとき,自然数$m$に対して,$x_m$を$m$で表せ.
(4)$(3)$で定めた$x_m$に対し,$89x_m+29y=-20$を満たす$y$の値を$y_m$とするとき,自然数$n$に対して,$\displaystyle \sum_{m=1}^n (3x_m+y_m)^2$を$n$で表せ.
東京学芸大学 国立 東京学芸大学 2016年 第4問
自然数$n$に対して,$\displaystyle f_n(x)=\sum_{k=1}^n \frac{x^k}{k}-x^{n+1}$とするとき,$x \geqq 0$において下の不等式が成り立つことを示せ.


(1)$\displaystyle f_n(x)-f_{n-1}(x) \leqq \log \frac{n}{n-1}$ (ただし$n$は$2$以上とする)

(2)$\displaystyle f_n(x) \leqq \frac{1}{4}+\log n$
電気通信大学 国立 電気通信大学 2016年 第2問
等比数列$\{a_n\}$と等差数列$\{b_n\}$を次の通りとする.
\[ a_n=\left( \frac{1}{\sqrt{2}} \right)^{n-3},\quad b_n=\frac{3 \pi (n-1)}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
これらを用いて,座標平面上の点$\mathrm{P}_n$を
\[ \mathrm{P}_n (a_n \cos b_n,\ a_n \sin b_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}_4$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点であることを示せ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さ$l_n$を$n$の式で表せ.
(3)極限値$\displaystyle L=\lim_{n \to \infty} \sum_{k=1}^n l_k$を求めよ.
(4)座標平面上の曲線$C$が媒介変数$t$と定数$\alpha,\ \beta$を用いて,
\[ x=2^{\alpha t+\beta} \cos t,\quad y=2^{\alpha t+\beta} \sin t \]
と表されるとする.曲線$C$が$t=0$で点$\mathrm{P}_1$を通り,$\displaystyle t=\frac{3 \pi}{4}$で点$\mathrm{P}_2$を通るとき,$\alpha,\ \beta$の値を求めよ.
(5)$(4)$で求めた$\alpha,\ \beta$の値に対し,曲線$C$がすべての点$\mathrm{P}_n (n=1,\ 2,\ 3,\ \cdots)$を通ることを示せ.
島根大学 国立 島根大学 2016年 第1問
$1$から$5$までの数字を$1$つずつ書いた$5$枚のカードが箱に入っている.箱の中から$1$枚のカードを取り出してもとに戻すことを$n$回続けて行う.$k$回目に取り出したカードの数字を$a_k$とし,$\displaystyle \sum_{k=1}^n a_k$が偶数である確率を$p_n$とする.このとき,次の問いに答えよ.

(1)$p_1,\ p_2$を求めよ.
(2)$p_{n+1}$を$p_n$を用いて表せ.
(3)$p_n$を求めよ.
富山大学 国立 富山大学 2016年 第1問
$\displaystyle \sum_{n=0}^{100} 2^n$の桁数を求めよ.ただし,$\log_{10}2=0.3010$とする.
富山大学 国立 富山大学 2016年 第3問
$\displaystyle \sum_{n=0}^{100} 3^n$の桁数を求めよ.ただし,$\log_{10}3=0.4771$とする.
富山大学 国立 富山大学 2016年 第3問
$\displaystyle \sum_{n=0}^{100} 3^n$の桁数を求めよ.ただし,$\log_{10}3=0.4771$とする.
東京海洋大学 国立 東京海洋大学 2016年 第3問
$\log_{10}2=0.301$,$\log_{10}3=0.477$,$\log_{10}5=0.699$,$\log_{10}7=0.845$とする.このとき,次の問に答えよ.

(1)${2016}^n>{10}^{100}$となる最小の自然数$n$を求めよ.
(2)$\displaystyle \sum_{k=0}^n {225}^k>{10}^{100}$となる最小の自然数$n$を求めよ.
福井大学 国立 福井大学 2016年 第4問
表の出る確率が$r$,裏の出る確率が$1-r$であるコインがある.このコインを繰り返し投げ,表の出た回数と裏の出た回数の差の絶対値が$2$になったときにコイン投げを終了する.ちょうど$2n$回で終了する確率を$p_n$とし,$2n$回以下で終了する確率を$q_n$とする.ただし,$n$は正の整数とする.このとき,以下の問いに答えよ.

(1)$p_n$を求めよ.
(2)無限級数$\displaystyle \sum_{n=1}^\infty np_n$の和を求めよ.ただし,$0 \leqq s<1$に対して$\displaystyle \lim_{n \to \infty}ns^n=0$であることを用いてもよい.
(3)$\displaystyle r=\frac{1}{4}$のとき,$q_n \geqq 0.999$となる最小の$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。