タグ「数列の和」の検索結果

49ページ目:全498問中481問~490問を表示)
新潟大学 国立 新潟大学 2010年 第2問
次の条件(ア)~(ウ)を満たす数列$\{p_n\}$について考える.

\mon[(ア)] $p_1 \leqq p_2 \leqq \cdots \leqq p_n \leqq \cdots$である.
\mon[(イ)] $p_1,\ p_2,\ \cdots,\ p_n,\ \cdots$はどれも自然数である.
\mon[(ウ)] $p_1,\ p_2,\ \cdots,\ p_n,\ \cdots$の中にはすべての自然数$k$が現れ,その個数は$k$以上$k+2$以下である.

条件(ア)~(ウ)を満たし,すべての自然数$k$がちょうど$k$個現れる数列
\[ 1,\ 2,\ 2,\ 3,\ 3,\ 3,\ \cdots,\ \uebrace{k,\ k,\ \cdots,\ k}^{k個},\ \cdots \]
を$\{a_n\}$とする.このとき,次の問いに答えよ.

(1)項数5の数列で,数列$\{p_n\}$の初めの5項となり得るものをすべて挙げよ.
(2)数列$\{a_n\}$の第210項$a_{210}$の値を求めよ.
(3)$\displaystyle \sum_{i=1}^{50}p_i$のとり得る最小の値を求めよ.
愛媛大学 国立 愛媛大学 2010年 第8問
$n$を自然数とし,$\displaystyle f(x)=x^2e^{-\frac{2}{3}x^3}$とする.

(1)関数$y=f(x)$の増減を調べ,極値を求めよ.
(2)定積分$\displaystyle \int_1^n f(x) \, dx$を求めよ.
(3)不等式$\displaystyle \sum_{k=1}^n f(k)<\frac{3}{2}e^{-\frac{2}{3}}$を証明せよ.
新潟大学 国立 新潟大学 2010年 第3問
次の条件(ア)~(ウ)を満たす数列$\{p_n\}$について考える.

\mon[(ア)] $p_1 \leqq p_2 \leqq \cdots \leqq p_n \leqq \cdots$である.
\mon[(イ)] $p_1,\ p_2,\ \cdots,\ p_n,\ \cdots$はどれも自然数である.
\mon[(ウ)] $p_1,\ p_2,\ \cdots,\ p_n,\ \cdots$の中にはすべての自然数$k$が現れ,その個数は$k$以上$k+2$以下である.

条件(ア)~(ウ)を満たし,すべての自然数$k$がちょうど$k$個現れる数列
\[ 1,\ 2,\ 2,\ 3,\ 3,\ 3,\ \cdots,\ \uebrace{k,\ k,\ \cdots,\ k}^{k個},\ \cdots \]
を$\{a_n\}$とする.このとき,次の問いに答えよ.

(1)項数5の数列で,数列$\{p_n\}$の初めの5項となり得るものをすべて挙げよ.
(2)数列$\{a_n\}$の第210項$a_{210}$の値を求めよ.
(3)$\displaystyle \sum_{i=1}^{50}p_i$のとり得る最小の値を求めよ.
防衛大学校 国立 防衛大学校 2010年 第4問
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする.
\[ S_n=1-(2n^2+n-1)a_n \quad (n \geqq 1) \]
が成り立つとき,次の問に答えよ.

(1)$n \geqq 2$のとき,$a_n$を$a_{n-1}$と$n$を用いて表せ.
(2)$a_n$を$n$を用いて表せ.
(3)$\displaystyle \sum_{n=1}^{20}\frac{1}{a_n}$を求めよ.
東京農工大学 国立 東京農工大学 2010年 第2問
$a,\ b$を実数とする.行列
\[ A=\left( \begin{array}{cc}
-5 & -3 \\
6 & 4
\end{array} \right),\quad B=\left( \begin{array}{cc}
1& 0 \\
0 & -2
\end{array} \right),\quad P=\left( \begin{array}{cc}
-1 & -1 \\
a & b
\end{array} \right) \]
について次の問いに答えよ.

(1)$AP=PB$を満たすように実数$a,\ b$を定めよ.
(2)正の整数$n$について$A^n$を求めよ.
(3)$A^n$の成分のうち最大のものを$a_n$とする.$a_n$を求めよ.
(4)$\displaystyle S_n=\sum_{k=1}^n (a_{2k-1}+2a_{2k})r^k$とおく.数列$\{S_n\}$が収束するような実数$r$の範囲を求め,そのときの極限値$S=\lim_{n \to \infty}S_n$を$r$の式で表せ.
滋賀大学 国立 滋賀大学 2010年 第3問
数の集まり$\{1\},\ \{1,\ 2\},\ \{1,\ 2,\ 3\},\ \{1,\ 2,\ 3,\ 4\},\ \cdots$について,次のように並べてできる数列
\[ 1,\ 1,\ 2,\ 1,\ 2,\ 3,\ 1,\ 2,\ 3,\ 4,\ \cdots \]
の第$n$項を$a_n$とする.このとき,次の問いに答えよ.

(1)$100$以下の自然数$k$について,$a_k-a_{k+1} \geqq 9$となる$k$の最小値と最大値を求めよ.
(2)$a_{225}$を求めよ.
(3)$\displaystyle \sum_{k=1}^{225}a_k$を求めよ.
早稲田大学 私立 早稲田大学 2010年 第1問
$[ア]$~$[オ]$にあてはまる数または式を記入せよ.

(1)整数$a,\ b$が$2a+3b=42$を満たすとき,$ab$の最大値は$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=1$,$\mathrm{CA}=\sqrt{2}$とし,$\angle \mathrm{A}=\alpha$,$\angle \mathrm{B}=\beta$とする.正の整数$m,\ n$が$m\alpha + n\beta = \pi$を満たすとき,$m=[イ]$,$n=[ウ]$である.
(3)数列$\{a_n\}$は次の$3$つの条件を満たしている.

(i) $\{a_n\}$は等差数列で,その公差は$0$ではない.
(ii) $a_1=1$
(iii) 数列$a_3,\ a_6,\ a_{10}$は等比数列になっている.

このとき数列$\{a_n\}$の第$2010$項までの和$\displaystyle \sum_{n=1}^{2010}a_n$の値は$[エ]$である.
(4)四面体$\mathrm{ABCD}$は$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=1$を満たす.このような四面体の体積のとり得る最大値は$[オ]$である.
愛知工業大学 私立 愛知工業大学 2010年 第1問
次の$[ ]$を適当に補え.

(1)$x^2-2y^2+xy+5x+y+6$を因数分解すると$[ ]$となる.
(2)平面上に半径$1$と半径$2$の円がある.共通接線がちょうど$3$本引けるとき,この$3$本の接線によって囲まれる三角形の面積は$[ ]$である.
(3)$2$つの平面ベクトルを$\overrightarrow{a}=(3,\ -1)$,$\overrightarrow{b}=(0,\ 2)$とする.$s,\ t$が$s+t=3 (0 \leqq s \leqq 3)$をみたすとき,ベクトル$s \overrightarrow{a}+t \overrightarrow{b}$の大きさの最大値は$[ ]$,最小値は$[ ]$である.
(4)$y=\sin^2 x+4 \sin x \cos x+3 \cos^2 x$を$\sin 2x$と$\cos 2x$の式で表すと$y=[ ]$となり,$0 \leqq x \leqq \pi$における$y$の値の範囲は$[ ]$である.
(5)ある粒子を$1$枚で$50 \, \%$遮断できる繊維がある.この繊維を少なくとも$[ ]$枚重ねれば,この粒子を$99 \, \%$以上遮断できる.ただし,$\log_{10}2=0.3010$とする.
(6)$\displaystyle S_n=\frac{\left( \sum_{k=1}^n k \right)^2}{\sum_{k=1}^n k^2}$のとき,$S_3=[ ]$であり,$\displaystyle \lim_{n \to \infty} \frac{S_n}{n}=[ ]$である.
東北医科薬科大学 私立 東北医科薬科大学 2010年 第3問
初項$2$,公差$4$の等差数列$a_n$を
\[ \begin{array}{cccccc}
a_1 & a_2 & a_4 & a_7 & a_{11} & \cdots \\
a_3 & a_5 & a_8 & a_{12} & \cdots & \cdots \\
a_6 & a_9 & \swarrow & \cdots & \cdots & \cdots \\
a_{10} & \swarrow & \cdots & \cdots & \cdots & \cdots
\end{array} \]
とならべて,これを
\[ \begin{array}{cccccc}
b(1,\ 1) & b(1,\ 2) & b(1,\ 3) & b(1,\ 4) & b(1,\ 5) & \cdots \\
b(2,\ 1) & b(2,\ 2) & b(2,\ 3) & b(2,\ 4) & \cdots & \cdots \\
b(3,\ 1) & b(3,\ 2) & \swarrow & \cdots & \cdots & \cdots \\
b(4,\ 1) & \swarrow & \cdots & \cdots & \cdots & \cdots
\end{array} \]
と表す.例えば$a_1=b(1,\ 1)$である.このとき,次の問に答えなさい.

(1)このとき,$b(1,\ 2)=[ア]$である.
(2)$1$行目の$l$番目の数は$b(1,\ l)=[イ]l^2-[ウ]l+[エ]$である.
(3)$1$行目の$1$番目の数から$1$行目の$k$番目の数までの和は
\[ \sum_{l=1}^k b(1,\ l)=\frac{[オ]k \left( k^{[カ]}+[キ] \right)}{[ク]} \]
である.
(4)$k$行目の$l$番目の数は
\[ b(k,\ l)=[ケ]k^2+[コ]l^2+[サ]kl-[シ]k-[ス]l+[セ] \]
である.
(5)$1$行目から$n$行目までの$1$番目の数から$n$番目の数までの和を$S(n)$とおく.このとき,$S(2)$は
\[ \begin{array}{cc}
b(1,\ 1) & b(1,\ 2) \\
b(2,\ 1) & b(2,\ 2) \\
\end{array} \]
の和なので$S(2)=[ソタ]$である.また,$\displaystyle S(k)=\frac{k^{[チ]} ([ツ]k^2-[テ])}{[ト]}$である.
獨協医科大学 私立 獨協医科大学 2010年 第4問
原点を$\mathrm{O}$とする座標平面上の動点$\mathrm{P}$の位置ベクトル$\overrightarrow{\mathrm{OP}}=(x,\ y)$が,時刻$t$の関数として,$x=e^{-2t} \cos 2\pi t$,$y=e^{-2t} \sin 2\pi t$で表されている.

(1)点$\mathrm{P}$の速度ベクトル$\displaystyle \overrightarrow{v}=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$の大きさは,$|\overrightarrow{v}|=[ ] \sqrt{[ ]+\pi^2}e^{-2t}$である.
(2)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\alpha$とするとき,$\displaystyle \cos \alpha=\frac{[ ]}{\sqrt{[ ]+\pi^2}}$であり,これは時刻$t$によらない一定値である.
(3)$n$を自然数として,$t=n-1$から$t=n$までの間に点$\mathrm{P}$が動く道のり$S_n$は,
\[ S_n=\sqrt{[ ]+\pi^2} \left( e^{[ ]}-[ ] \right) e^{-2n} \]
である.また,$\displaystyle \sum_{n=1}^{\infty}S_n=\sqrt{[ ]+\pi^2}$である.
(4)$t=0$から$\displaystyle t=\frac{1}{4}$までの間に点$\mathrm{P}$がえがく曲線と,$x$軸,$y$軸とで囲まれる図形の面積$I$は,$\displaystyle I=\int_a^b y \, dx=\int_{\frac{1}{4}}^0 y \frac{dx}{dt} \, dt$で求められる.このとき$a=[ ]$,$b=[ ]$で,$\displaystyle I=\int_0^{\frac{1}{4}} e^{-4t} \{ \sin [$*$] \pi t+\pi (1-\cos [$*$] \pi t) \} \, dt$である.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。