タグ「数列の和」の検索結果

44ページ目:全498問中431問~440問を表示)
関西学院大学 私立 関西学院大学 2011年 第3問
実数$x$に対して,$x$以下の最大の整数を$[x]$と表す.例えば,$[1]=1$,$\displaystyle \left[ \frac{5}{2} \right]=2$である.正の整数$n$に対して$\displaystyle a_n=\left[ \frac{2}{3}n \right]$とするとき,次の問いに答えよ.

(1)$a_1$から$a_6$までの$6$つの項を求めよ.
(2)正の整数$m$に対して$\displaystyle \sum_{k=3m-2}^{3m}a_k$を求めよ.
(3)$\displaystyle \sum_{k=1}^{3n}a_k$を求めよ.
(4)$\displaystyle \sum_{k=1}^{3n}ka_k$を求めよ.
福岡大学 私立 福岡大学 2011年 第2問
次の$[ ]$をうめよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{AC}$を$3:2$に内分する点を$\mathrm{N}$,線分$\mathrm{BN}$と$\mathrm{CM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{AP}}=[ ]$となる.さらに,$\mathrm{AB}=9$,$\mathrm{AC}=6$,$\mathrm{AP}=4$のとき,$\overrightarrow{b}$と$\overrightarrow{c}$の内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値は$[ ]$である.
(2)点$(2,\ -3)$を点$(1,\ -1)$に移し,点$(-1,\ 4)$を点$(7,\ -2)$に移す$1$次変換$f$を表す行列$A$を求めると,$A=[ ]$である.また,原点を中心として一定の角だけ回転する回転移動$g$が点$(3,\ 3)$を点$(1+2 \sqrt{2},\ 1-2 \sqrt{2})$に移すとき,$g$を表す行列$B$を求めると,$B=[ ]$である.
(3)数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$a_2=1$,$a_{n+2}=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$a_7,\ a_8$の値を求めると,$(a_7,\ a_8)=[ ]$である.また,$\displaystyle \sum_{k=1}^\infty \frac{a_k}{2^k}$の値は$[ ]$である.
京都薬科大学 私立 京都薬科大学 2011年 第2問
あるジュースにはおまけとして$1$本につき$1$つのキャラクターグッズが付いている.キャラクターグッズは全部で$6$種類あり,現在$2$種類持っているとする.各キャラクターグッズは,同じ割合で封入されているとして,以下の$[ ]$にあてはまる数または式を記入せよ.

(1)今からカウントして,$3$種類目のキャラクターグッズを得るまでに購入するジュースの本数を$X$とする.

(i) $X=1$となる確率は$[ ]$である.
(ii) $X=2$となる確率は$[ ]$である.
(iii) $X=k$となる確率を$P(k)$とするとき,$\displaystyle \sum_{k=1}^n kP(k)=[ ]$となる.

(2)ジュースを$5$本,まとめ買いしたとする.

(i) この$5$本のおまけの中に,少なくとも$1$つは,現在持っていないキャラクターグッズが含まれる確率は$[ ]$である.
(ii) 現在持っていないキャラクターグッズを,ちょうど$1$つだけ得る確率は$[ ]$である.
(iii) 現在持っていないキャラクターグッズ$4$種類を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.$5$つのおまけの中で,$\mathrm{A}$が$2$つ$\mathrm{B}$が$1$つ,残り$2$つはすでに持っているキャラクターグッズが出る確率は$[ ]$である.
\mon[$\tokeishi$] 現在持っていないキャラクターグッズ$2$種類をちょうど$1$つずつだけ(残り$3$つはすでに持っているキャラクターグッズを)得る確率は$[ ]$である.
神戸薬科大学 私立 神戸薬科大学 2011年 第2問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)$\displaystyle S=\sum_{n=1}^{18} (-1)^n \log_{10}(n+1)(n+2)$の値を計算すると$S=[ ]$である.
(2)$a>0,\ b>0,\ a+b=1$のとき,$\displaystyle \left( 2+\frac{1}{a} \right) \left( 2+\frac{1}{b} \right)$の最小値は$[ ]$である.
(3)$2$次方程式$x^2+ax+a^2-4=0$が正の解と負の解を$1$つずつ持つときの定数$a$の値の範囲は,$[ ]<a<[ ]$である.
(4)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$S_n=2a_n+2n-5$で与えられている.このとき,$a_1=[ ]$である.また,$a_{n+1}$を$a_n$を用いて表すと$a_{n+1}=[ ]$である.
津田塾大学 私立 津田塾大学 2011年 第2問
自然数$n$に対し$\displaystyle S_n=\sum_{k=1}^n \frac{1}{2^k} \sin \left( \frac{k^2 \pi}{4} \right)$と定める.以下の問いに答えよ.

(1)$S_4$を求めよ.
(2)$n$が奇数ならば,$S_{n+1}=S_n$が成り立つことを示せ.
(3)$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
青山学院大学 私立 青山学院大学 2011年 第5問
曲線$y=e^{-x}$上の点$(1,\ e^{-1})$における接線と$x$軸の交点を$(a_1,\ 0)$とする.次に,$y=e^{-x}$上の点$(a_1,\ e^{-a_1})$における接線と$x$軸の交点を$(a_2,\ 0)$とする.以下,同様に$a_n (n=3,\ 4,\ 5,\ \cdots)$を定める.次の問に答えよ.

(1)$a_1$を求めよ.
(2)$a_n$を求めよ.
(3)曲線上の点$(a_n,\ e^{-a_n})$における接線と,直線$x=a_n$および$x$軸で囲まれた三角形の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
大阪市立大学 公立 大阪市立大学 2011年 第4問
$N,\ a,\ b$は正の整数とする.箱の中に赤玉が$a$個,白玉が$b$個入っている.箱から無作為に$1$個の玉を取り出し,色を記録して箱に戻す.この操作を繰り返し,同じ色の玉が$2$回続けて出るか,または取り出す回数が$2N +2$になったら終了する.$n$回取り出して終わる確率を$P(n)$とし,$\displaystyle p = \frac{a}{a+b},\ q = \frac{b}{a+b},\ r = pq$とおく.次の問いに答えよ.

(1)$P(2j),\ P(2j +1) \ (j = 1,\ 2,\ \cdots,\ N)$および$P(2N +2)$を$r$を用いて表せ.
(2)偶数回取り出して終わる確率$\displaystyle Q = \sum_{j=1}^{N+1} P(2j)$について,$\displaystyle Q > \frac{1-2r}{1-r}$となることを示せ.
大阪市立大学 公立 大阪市立大学 2011年 第4問
$N,\ a,\ b$は正の整数とする.箱の中に赤玉が$a$個,白玉が$b$個入っている.箱から無作為に1個の玉を取り出し,色を記録して箱に戻す.この操作を繰り返し,同じ色の玉が2回続けて出るか,または取り出す回数が$2N +2$になったら終了する.$n$回取り出して終わる確率を$P(n)$とし,$\displaystyle p=\frac{a}{a+b},\ q =\frac{b}{a+b},\ r = pq$とおく.次の問いに答えよ.

(1)$P(2j),\ P(2j+1) \ (j =1,\ 2,\ \cdots,\ N)$および$P(2N +2)$を$r$を用いて表せ.
(2)$\displaystyle (1-r)\sum_{j=1}^N jr^{j-1}=\frac{1-r^N}{1-r}-Nr^N$を示せ.
(3)取り出す回数の期待値$\displaystyle m = \sum_{n=2}^{2N+2} nP(n)$について,$\displaystyle m<\frac{2+r}{1-r}$となることを示せ.
(4)上の期待値$m$について,$m<3$を示せ.
大阪府立大学 公立 大阪府立大学 2011年 第4問
次の問いに答えよ.

(1)自然数$n$に対して,$\displaystyle s_n=\sum_{k=1}^n \frac{k}{2^k}$とする.このとき数学的帰納法により,
\[ s_n=\frac{2^{n+1}-n-2}{2^n} \]
であることを示せ.
(2)$a_1=0,\ a_2=1$とし,自然数$n$に対して,$a_{n+2}-3a_{n+1}+2a_n=n+1$を満たす数列$\{a_n\}$について以下の問いに答えよ.

\mon[(i)] $b_n=a_{n+1}-a_n$とするとき,数列$\{b_n\}$が満たす漸化式を求めよ.
\mon[(ii)] $b_n$を(1)で与えた$s_n$を用いて表せ.
\mon[(iii)] 数列$\{a_n\}$の一般項$a_n$を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第1問
複数の参加者がグー,チョキ,パーを出して勝敗を決めるジャンケンについて,以下の問いに答えよ.ただし,各参加者は,グー,チョキ,パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする.

(1)$4$人で一度だけジャンケンをするとき,$1$人だけが勝つ確率,$2$人が勝つ確率,$3$人が勝つ確率,引き分けになる確率をそれぞれ求めよ.
(2)$n$人で一度だけジャンケンをするとき,$r$人が勝つ確率を$n$と$r$を用いて表わせ.ただし,$n \geqq 2,\ 1 \leqq r < n$とする.
(3)$\displaystyle \sum_{r=1}^{n-1} {}_n \text{C}_r=2^n-2$が成り立つことを示し,$n$人で一度だけジャンケンをするとき,引き分けになる確率を$n$を用いて表わせ.ただし,$n \geqq 2$とする.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。