タグ「数列の和」の検索結果

43ページ目:全498問中421問~430問を表示)
早稲田大学 私立 早稲田大学 2011年 第3問
$f(x)=\displaystyle\frac{\log x}{x}$とする.以下の問に答えよ.

(1)$y=f(x)$のグラフの概形を次の点に注意して描け:$f(x)$の増減,グラフの凹凸,$x$→$+0$,$x$→$\infty$のときの$f(x)$の挙動.
(2)$n$を自然数とする.$k=1,\ 2,\ \cdots,\ n$に対して$x$が$\displaystyle e^{\frac{k-1}{n}} \leqq x \leqq e^{\frac{k}{n}}$を動くときの$f(x)$の最大値を$M_k$,最小値を$m_k$とし,
\[ A_n = \sum_{k=1}^n M_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
\[ B_n = \sum_{k=1}^n m_k(e^{\frac{k}{n}}- e^{\frac{k-1}{n}}) \]
とおく.$A_n,\ B_n$を求めよ.
(3)$\displaystyle\lim_{n \to \infty} A_n$および$\displaystyle\lim_{n \to \infty} B_n$求めよ.
(4)各$n$に対して$\displaystyle B_n < \int_1^e f(x)\, dx < A_n$であることを示せ.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$に数値を入れよ.

(1)$a_1,\ a_2,\ a_3,\ \cdots$を初項が$-15$,公差が整数$d$の等差数列とする.このとき$a_4<0<a_5$ならば,$d=[1]$となり,
\[ \sum_{n=1}^5 (-1)^{n-1}na_n=[2] \]
である.
(2)$1$から$4$までの数字が,$1$つずつ書いてある$4$枚のカードがある.この中から同時に$2$枚を取り出し,大きい方の数字を$a$とし,小さい方の数字を$b$とするとき,$2a-b$を得点とする.このとき,得点の期待値は,$[3]$であり,得点が$[3]$未満となる確率は,$[4]$である.
(3)$0 \leqq x \leqq \pi$かつ$\displaystyle x \neq \frac{\pi}{2}$を満たす$x$について,
\[ 1-\tan^2 x=3 \cos (\pi-x)+\frac{2}{\cos (\pi-x)} \]
を満たすとき,
\[ \cos x=[5],\quad \sin x=[6] \]
である.
明治大学 私立 明治大学 2011年 第1問
以下の$[ア]$から$[ツ]$にあてはまる数字または式を記入せよ.

(1)数列
\[ \frac{1}{1+2},\ \frac{1}{1+2+3},\ \frac{1}{1+2+3+4},\ \cdots \]
の第$n$項を$a_n$で表すと
\[ a_{40} = \frac{1}{[ア][イ][ウ]} \]
であり,
\[ \sum_{n=40}^{80} a_n = \frac{[エ]}{[オ][カ]} \]
である.
(2)$\mathrm{OA}=2$,$\mathrm{OB}=1$である三角形$\mathrm{OAB}$において,$\angle \mathrm{AOB}$の$2$等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.また線分$\mathrm{AB}$を$5:2$に外分する点を$\mathrm{D}$,線分$\mathrm{OB}$を$2:1$に外分する点を$\mathrm{E}$とする.さらに直線$\mathrm{OC}$と直線$\mathrm{DE}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,


$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{[キ]}{[ク]} \overrightarrow{a}+\frac{[ケ]}{[コ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{DE}}=\frac{[サ]}{[シ]} \overrightarrow{a}+\frac{[ス]}{[セ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{a}+\frac{[チ]}{[ツ]} \overrightarrow{b}$


となる.

(3)$\displaystyle \lim_{x \to 0}\frac{\sqrt{1+6x^2}-1}{\sin^2 x}=[テ]$
(4)$\comb{n}{5}$が$5$の倍数となるような整数$n$は,$100 \leqq n \leqq 125$の範囲に$[ト]$個ある.
明治大学 私立 明治大学 2011年 第4問
$2$つの関数
\[ f(x)=2e^{-x} |\sin x|,\quad g(x)=\sqrt{2}e^{-x} \]
を考える.方程式$f(x)-g(x)=0 (x \geqq 0)$の解を小さいものから順に$x_1,\ x_2,\ x_3,\ \cdots$とする.

(1)次の$[さ]$から$[す]$にあてはまるものを記入せよ.

(i) $x_k=[さ] (k=1,\ 2,\ 3,\ \cdots)$である.
(ii) $a,\ b$を定数とする.
\[ \frac{d}{dx} \{e^{-x}(a \sin x+b \cos x)\}=2e^{-x} \sin x \]
が成り立つのは,$a=[し]$,$b=[す]$のときである.

(2)$\displaystyle S_n=\int_{x_{2n-1}}^{x_{2n}} (f(x)-g(x)) \, dx (n=1,\ 2,\ 3,\ \cdots)$とおく.以下の解答は途中経過も書くこと.

(i) $S_1$を求めよ.
(ii) $S_n (n=2,\ 3,\ 4,\ \cdots)$を求めよ.
(iii) $\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
上智大学 私立 上智大学 2011年 第4問
実数$x$に対し,$x$を超えない最大の整数を$[x]$で表す.

自然数$n=1,\ 2,\ 3,\ \cdots$に対して,$n$が$[\sqrt{n}]$の整数倍で表せるとき,そのような$n$を小さいものから順に並べて
\[ n_1,\ n_2,\ n_3,\ \cdots \]
とする.

(1)$n_5=[マ]$である.
(2)自然数$p$に対して,$[\sqrt{n}]=p$をみたす自然数$n$の集合を$M_p$とする.$M_p$の要素で$p$の整数倍であるものは全部で$[ミ]$個ある.
(3)自然数$m$に対して,
\[ S_m=\sum_{i=1}^m n_i \]
とおく.$k \geqq 1$のとき,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$はいずれも$k$の多項式で,それぞれの$k$の$1$次の項の係数は$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$の順に$[ム]$,$[メ]$,$[モ]$である.また,$S_{3k-2}$,$S_{3k-1}$,$S_{3k}$は共通の因数$\displaystyle \left( k+[ヤ] \right)$をもつ.

(4)$\displaystyle \lim_{m \to \infty} \frac{\sqrt[3]{S_m}}{m}=\frac{[ユ]}{[ヨ]}$である.
学習院大学 私立 学習院大学 2011年 第2問
$n$を自然数とする.

(1)等式
\[ \sum_{k=0}^n (-1)^k \comb{n}{k}=0 \]
を示せ.
(2)$k$が$0 \leqq k \leqq n$を満たす整数のとき,等式
\[ (n+1) \comb{n}{k}=(k+1) \comb{n+1}{k+1} \]
が成り立つことを示せ.
(3)等式
\[ \sum_{k=0}^n \frac{(-1)^k}{k+1} \comb{n}{k}=\frac{1}{n+1} \]
を示せ.
中央大学 私立 中央大学 2011年 第1問
次の各問いに答えよ.

(1)$xy=100$,$x>y$をみたす自然数$x,\ y$の組み合わせは何通りあるか.
(2)次の値を求めよ.
\[ \sum_{k=1}^{10} (2k^2-3k+5) \]
(3)$k$が定数のとき,$y=x^2-2kx+2k^2+3k-2$は放物線を表す.定数$k$をいろいろ変化させるとき,放物線の頂点はどのような曲線上を動いていくか.
(4)半径が$2t+1$の球の体積を$V(t)$とする.$V(t)$を$t$で微分した導関数を求めよ.
(5)$\log_{10}x=0.8$,$\log_{10}y=0.3$のとき,$\log_{10}x^2y^3$の値を求めよ.
(6)$1$枚の硬貨を$5$回投げたとき,表が$3$回出る確率を求めよ.
久留米大学 私立 久留米大学 2011年 第4問
整数$k$に対して,曲線$y=4e^{-x}$と$x$軸,および直線$x=k$と$x=k+1$とで囲まれた図形の面積を$S_k$とする.同じく,この図形を$x$軸のまわりに回転してできる立体の体積を$V_k$とする.このとき,$S_k=[$7$]$,$V_k=[$8$]$であり,無限級数$\displaystyle \sum_{n=1}^\infty S_n$は$[$9$]$に,$\displaystyle \sum_{n=1}^\infty V_n$は$[$10$]$に収束する.
中央大学 私立 中央大学 2011年 第2問
数列$\{a_n\}$を
\[ a_n=\frac{\pi}{6}+\frac{\pi}{2}(n-1) \quad (n=1,\ 2,\ \cdots) \]
と定め,これに対して新しい数列$\{b_n\}$を
\[ b_n=\sin a_n \quad (n=1,\ 2,\ \cdots) \]
と定める.このとき以下の設問に答えよ.

(1)$b_{12}$,$b_{18}$および$b_{23}$の値を求めよ.
(2)$\displaystyle \sum_{n=1}^{50} b_n$の値を求めよ.
産業医科大学 私立 産業医科大学 2011年 第3問
数列$1,\ 2,\ 1,\ 3,\ 2,\ 1,\ 4,\ 3,\ 2,\ 1,\ 5,\ 4,\ 3,\ 2,\ 1,\ \cdots,\ k,\ k-1,\ \cdots,\ 2,\ 1,\ k+1,\ k,\ \cdots,\ 2,\ 1,\ \cdots$の第$n$項を$a_n$とする.このとき,次の問いに答えなさい.

(1)数字$9$が$16$度目に現れるのは第何項か.
(2)$\displaystyle \sum_{n=1}^{365} a_n$を求めなさい.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。