タグ「数列の和」の検索結果

41ページ目:全498問中401問~410問を表示)
信州大学 国立 信州大学 2011年 第1問
正の数$a_1,\ a_2,\ \cdots,\ a_n$と自然数$n \geqq 2$に対して,次の不等式が成り立つことを数学的帰納法で証明しなさい.
\[ \sum_{i=1}^n \frac{a_i}{1+a_i} > \frac{a_1 +a_2 + \cdots +a_n}{1+a_1 +a_2+\cdots+a_n} \]
筑波大学 国立 筑波大学 2011年 第4問
数列$\{a_n\}$を,
\begin{eqnarray}
& & a_1=1, \nonumber \\
& & (n+3)a_{n+1}-na_n=\frac{1}{n+1}-\frac{1}{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber
\end{eqnarray}
によって定める.

(1)$b_n=n(n+1)(n+2)a_n \ (n=1,\ 2,\ 3,\ \cdots)$によって定まる数列$\{b_n\}$の一般項を求めよ.
(2)等式
\[ p(n+1)(n+2)+qn(n+2)+rn(n+1)=b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つように,定数$p,\ q,\ r$の値を求めよ.
(3)$\displaystyle \sum_{k=1}^n a_k$を$n$の式で表せ.
千葉大学 国立 千葉大学 2011年 第11問
$\displaystyle f(x)=x\int_0^x \frac{dt}{1+t^2}, g(x)=\log (1+x^2) \ (x \text{は実数})$とおく.ただし,$\log x$は$x$の自然対数を表す.

(1)$\displaystyle \int_0^1 f(x) \, dx$の値を求めよ.
(2)$x>0$のとき$f(x) > g(x)$であることを証明せよ.
(3)$\displaystyle \lim_{n \to \infty} \left\{ \left( \frac{1}{n} \sum_{k=1}^n \log (k^2+n^2) \right) -2\log n \right\}$の値を求めよ.
岩手大学 国立 岩手大学 2011年 第3問
次の文章について,後の問いに答えよ.\\ \\
\quad 地球温暖化問題に関して,二酸化炭素の排出量の削減が叫ばれている.2008年に日本で開かれたサミットでは,42年後の2050年までに,年当たりの排出量を2008年のときと比較して50$\%$以上削減する,という目標が提言された.この目標を達成するために,前年比同率で削減することを考える.\\
\quad 2008年における排出量を$a \ (a>0)$とし,毎年,前年の$d \times 100 \% \ (0<d<1)$を減らすこととする.2008年の1年後の2009年の排出量の目標は[\bf ア]である.2008年から$n$年後の年間排出量を$a_n$とおくと,$a_n=[イ]$である.目標を達成するには$\displaystyle a_{42} \leqq \frac{a}{2}$,つまり,$d$を用いた式で表せば,
\[ [ウ] \leqq \frac{1}{2} \]
が成り立てばよい.両辺の逆数をとれば$\displaystyle \frac{1}{[ウ]} \geqq 2$となる.ところで,不等式
\[ (1+d)^{42} < \frac{1}{[ウ]} \ \, \cdots\cdots \maru{1} \]
が成り立つことがわかる.従って,
\[ (1+d)^{42} \geqq 2 \qquad\qquad \cdots\cdots \maru{2} \]
を満たす$d$を見つければ目標を達成することは明らかである.不等式\maru{2}の左辺は,二項定理により
\[ (1+d)^{42} =\sum_{r=0}^{42} [エ] \]
と表される.これを用いると,\underline{$d=0.02$は不等式\maru{2}を満たす}ことがわかる.つまり,毎年$2\%$の削減を2009年から行ったとすれば,42年後の2050年の排出量は2008年の$50\%$未満となることがわかった.

(1)文章中の[ア]~[エ]に当てはまる式を答えよ.
(2)$0<d<1$とするとき,不等式\maru{1}を証明せよ.
(3)下線部の命題を証明せよ.
(4)毎年$2\%$の削減を行った場合でも,42年間の排出量の合計は,削減率を0のまま2008年と同じ排出量を同じ期間続けたときの排出量の合計の$\displaystyle \frac{7}{12}$倍より大きくなることを証明せよ.
香川大学 国立 香川大学 2011年 第3問
曲線$C:y=e^{-x}|\sin x| \ (x \geqq 0)$がある.このとき,次の問に答えよ.

(1)$\displaystyle I=\int e^{-x} \sin x \, dx,\ J=\int e^{-x} \cos x \, dx$とおく.$I,\ J$をそれぞれ部分積分して,$I$を求めよ.
(2)$2n \pi \leqq x \leqq (2n+1)\pi \ (n=0,\ 1,\ 2,\ \cdots)$の範囲で,曲線$C$と$x$軸で囲まれる図形の面積$S_{2n}$を求めよ.
(3)$(2n+1) \pi \leqq x \leqq 2(n+1)\pi \ (n=0,\ 1,\ 2,\ \cdots)$の範囲で,曲線$C$と$x$軸で囲まれる図形の面積$S_{2n+1}$を求めよ.
(4)曲線$C$と$x$軸で囲まれる図形の面積$\displaystyle \sum_{k=0}^\infty S_k$を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2011年 第3問
自然数$n$に対し
\begin{eqnarray}
& & S_n=\int_0^1 \frac{1-(-x)^n}{1+x} \, dx \nonumber \\
& & T_n=\sum_{k=1}^n \frac{(-1)^{k-1}}{k(k+1)} \nonumber
\end{eqnarray}
とおく.このとき以下の各問いに答えよ.

(1)次の不等式を示せ.
\[ \left| S_n-\int_0^1 \frac{1}{1+x} \, dx \right| \leqq \frac{1}{n+1} \]
(2)$T_n-2S_n$を$n$を用いて表せ.
(3)極限値$\displaystyle \lim_{n \to \infty} T_n$を求めよ.
岐阜大学 国立 岐阜大学 2011年 第4問
$k,\ n$は自然数で$n \geqq 3$とする.平面上の点$\mathrm{O}$を中心とする \\
半径1の円を$S_1$とする.右の図のように,半径$r_1$の$n$個の \\
円は隣り合う他の2つの円と外接し,かつ$S_1$に内接してい \\
る.さらに,点$\mathrm{O}$を中心とする円$S_2$は,半径$r_1$のすべて \\
の円に外接している.同様に,$k \geqq 2$に対して,半径$r_k$の \\
$n$個の円は隣り合う他の2つの円と外接し,かつ円$S_k$に内 \\
接している.さらに点$\mathrm{O}$を中心とする円$S_{k+1}$は,半径$r_k$ \\
のすべての円に外接している.$S_2$の半径を$s_2$とする.以下の問に答えよ.
\img{385_2485_2011_1}{60}


(1)$r_1$と$s_2$を$n$を用いて表せ.
(2)半径$r_k$の1つの円の面積を$T_k(n)$とする.$T_k(n)$を$k$と$n$を用いて表せ.
(3)$\displaystyle U(n)=n \sum_{k=1}^\infty T_k(n)$とする.$U(n)$を求めよ.
(4)$\displaystyle \lim_{n \to \infty}U(n)$を求めよ.
電気通信大学 国立 電気通信大学 2011年 第2問
$x>0$において関数
\[ f(x)=\sin (\log x) \]
を考える.\\
方程式$f(x)=0$の$0<x \leqq 1$における解を大きいほうから順にならべて,
\[ 1=\alpha_1>\alpha_2>\alpha_3>\cdots > \alpha_n>\alpha_{n+1} > \cdots \]
とする.以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数とする.なお,不定積分の計算においては積分定数を省略してもよい.

(1)不定積分$I(x),\ J(x)$をそれぞれ
\[ I(x)=\int e^x \sin x \, dx,\quad J(x)=\int e^x \cos x \, dx \]
とおくとき,$I(x)+J(x),\ I(x)-J(x)$を求めよ.
(2)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$\alpha_n \ (n=1,\ 2,\ 3,\ \cdots)$を求めよ.
(4)区間$\alpha_{n+1} \leqq x \leqq \alpha_n$において,曲線$y=f(x)$と$x$軸とで囲まれる部分の面積を$S_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.$S_n$を求めよ.
(5)無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を求めよ.
宇都宮大学 国立 宇都宮大学 2011年 第5問
座標平面上の直線$y=mx \ (m>0)$を$\ell$とする.点$(1,\ 0)$を$\mathrm{P}_1$とし,$\mathrm{P}_1$から$\ell$に下ろした垂線の足を$\mathrm{Q}_1$,$\mathrm{Q}_1$から$x$軸に下ろした垂線の足を$\mathrm{P}_2$とする.以下同様に$\mathrm{P}_n \ (n=1,\ 2,\ \cdots)$から$\ell$に下ろした垂線の足を$\mathrm{Q}_n$,$\mathrm{Q}_n$から$x$軸に下ろした垂線の足を$\mathrm{P}_{n+1}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2$の面積$S_1$を$m$を用いて表せ.
(2)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1} \ (n=1,\ 2,\ \cdots)$の面積を$S_n$とするとき,級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を$m$を用いて表せ.
(3)(2)における$S$が最大になる$m$と,そのときの$S$の値を求めよ.
群馬大学 国立 群馬大学 2011年 第2問
数列$\{a_n\}$と数列$\{b_n\}$が$\displaystyle a_n=\sum_{k=1}^n \left( \sum_{m=1}^k m^2 \right)$と$\displaystyle \sum_{k=1}^n \{ n-(k-1) \}k^2$で定められるとき,$a_n=b_n \ (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。