タグ「数列の和」の検索結果

39ページ目:全498問中381問~390問を表示)
東京理科大学 私立 東京理科大学 2012年 第1問
$[ ]$内のカタカナにあてはまる$0$から$9$までの数字を求めよ.

(1)$k$を自然数とすると,不等式
\[ k>\frac{\sqrt{k}+\sqrt{k-1}}{2} \]
が成立する.この不等式の右辺の逆数は$\displaystyle [ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right)$であるから,不等式
\[ \frac{1}{k}<[ア] \left( \sqrt{k}-\sqrt{k-[イ]} \right) \]
を得る.この不等式がすべての自然数$k$に対して成立することより,
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{k}=[ウ] \]
であることがわかる.
(2)自然数$n$に対し,
\[ a_n=\sum_{m=1}^{\infty} \frac{1}{m(m+n+1)},\quad s_n=\sum_{k=1}^n \frac{1}{k} \]
と定める.

(i) $\displaystyle \sum_{n=2}^{\infty} \frac{1}{n(n+1)}$を求めよ.

(ii) $\displaystyle \sum_{n=1}^{\infty} \left( \frac{1}{n}-\frac{1}{n+1} \right) s_{n+1}$を求めよ.

(ヒント:$n \geqq 2$であるような各自然数$n$に対して$s_{n+1}-s_n$を考えることにより,$(ⅰ)$の結果が使える形に変形せよ.)
(iii) $n$を自然数とする.また,$p$は自然数で,等式
\[ \sum_{m=1}^{\infty} \left( \frac{1}{m}-\frac{1}{m+n+1} \right)=s_p \]
が成立しているとする.このとき,$p$を$n$の$1$次式の形に表せ.
\mon[$\tokeishi$] $n$を自然数とし,$p$は$(ⅲ)$における通りであるとする.また,$q$は自然数で,等式
\[ a_n=\frac{s_p}{q} \]
が成立しているとする.このとき,$q$を$n$の$1$次式の形に表せ.
\mon[$\tokeigo$] $\displaystyle \sum_{n=1}^{\infty} \frac{a_n}{n}$を求めよ.
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)実数$\theta$に対し,$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標をもつ空間において,$3$点
\[ \mathrm{P}(\cos \theta,\ \sin \theta,\ 0),\quad \mathrm{Q}(0,\ \cos \theta,\ \sin \theta),\quad \mathrm{R}(0,\ \cos 2\theta,\ \sin 2\theta) \]
を考える.

(i) $\theta$が$-\pi \leqq \theta<\pi$の範囲を動くとき,$\mathrm{PQ}^2$の最大値は$[ア]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[イ]}{[ウ]} \pi$と$\displaystyle \frac{[エ]}{[オ]} \pi$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OR}}$のなす角を$\alpha$とする.$\theta$が$\displaystyle \frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{[カ]}{[キ]}$であり,最大値を与える$\theta$の値は$\displaystyle \frac{[ク]}{[ケ]} \pi$である.$\theta$が$\displaystyle -\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{\sqrt{[コ]}}{[サ]}$である.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$[シ]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[ス]}{[セ]} \pi$である.

(2)零行列でない$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が,等式$A^2=4A$を満たしているとする.

(i) $bc=0$のとき,$a+d$の値は$[ソ]$または$[タ]$である.また,$bc \neq 0$のとき,$a+d=[チ]$,$ad-bc=[ツ]$となる.特に,$b=c>0$とすると,
\[ A=\left( \begin{array}{cc}
a & \sqrt{([テ]-[ト]a)a} \\
\sqrt{([ナ]-[ニ]a)a} & [ヌ]-[ネ]a
\end{array} \right) \]
となる.
(ii) 自然数$n$に対し,
\[ \sum_{k=1}^n \comb{n}{k} 4^k 3^{n-k}=[ノ]^n-[ハ]^n \]
であるから,
\[ (A+3E)^n=\frac{[ヒ]}{[フ]} ([ヘ]^n-[ホ]^n)A+[マ]^n E \]
となる.ここで,$E$は$2$次の単位行列を表す.
大阪薬科大学 私立 大阪薬科大学 2012年 第2問
次の問いに答えなさい.多項式$P(x)={(1+x)}^{24}$を考える.

(1)$P(x)$の$x^2$の係数は$[$\mathrm{E]$}$である.
(2)$\comb{24}{0}-\comb{24}{1}+\comb{24}{2}-\comb{24}{3}+\cdots +\comb{24}{22}-\comb{24}{23}+\comb{24}{24}=[$\mathrm{F]$}$である.
(3)$\displaystyle Q(x)=\frac{1}{2} \left( P(x)+P(-x) \right)$とする.このとき,$Q(x)$は$P(x)$の
$\big\{$ (ア)奇数次数の項からなる. (イ)偶数次数の項からなる. (ウ)奇数次数と偶数次数の項からなる. $\bigr\}$
(ア),(イ),(ウ)の中から最も適切なものを選び,その記号を$[$\mathrm{G]$}$に記しなさい.
(4)方程式$x^3=1$の$3$つの解を$1,\ \alpha,\ \beta$とする.

(i) ${(1-\alpha)}^6=[$\mathrm{H]$}$である.
(ii) $\alpha^2-\beta=[$\mathrm{I]$}$である.
(iii) $\displaystyle \sum_{k=0}^{12} \comb{24}{2k} \beta^k$の値を$[い]$で求めなさい.
なお,必要ならば$3^{12}=531441$を使ってよい.
近畿大学 私立 近畿大学 2012年 第2問
$\angle \mathrm{A}={30}^\circ$,$\mathrm{AB}=\mathrm{AC}=4$をみたす$\triangle \mathrm{ABC}$において,点$\mathrm{C}$を点$\mathrm{P}_1$として,$\triangle \mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_1$,辺$\mathrm{AC}$上に点$\mathrm{P}_2$をとる.次に,図のように,$\triangle \mathrm{P}_2 \mathrm{Q}_2 \mathrm{P}_3$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_2$,辺$\mathrm{AC}$上に点$\mathrm{P}_3$をとる.以下同様にして,$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_n$,辺$\mathrm{AC}$上に点$\mathrm{P}_{n+1}$をとる.($n=1,\ 2,\ 3,\ \cdots$)
(図は省略)

$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$の面積を$S_n$,$\triangle \mathrm{Q}_n \mathrm{P}_{n+1} \mathrm{Q}_{n+1}$の面積を$T_n$とする.

(1)$\mathrm{BC}$と$\mathrm{P}_1 \mathrm{P}_2$の長さを,二重根号を用いない形で求めよ.
(2)$S_1,\ T_1$の値を求めよ.
(3)$S_n$を$n$を用いて表せ.また,$\displaystyle S_n<\frac{1}{1000}$をみたす最小の$n$の値を求めよ.
(4)$T_n$を$n$を用いて表せ.また,和$\displaystyle \sum_{n=1}^5 T_n$の値を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2012年 第2問
$n$を自然数,$c$および$d$を実数として,数列$\{a_n\}$を初項$c$,公差$d$の等差数列,数列$\{b_n\}$を初項$3$,公差$2$の等差数列とするとき,以下の設問に答えなさい.

(1)$d \neq 0$のとき,
\[ \sum_{k=1}^n e^{a_k}=[$1$] \]
となる.ただし,$e$は自然対数の底とする.
(2)数列$\{f_n\}$の第$n$項を$f_n=b_ne^{a_n}$と定義する.$d=-0.08$のとき,$f_n$の値が最大になるのは$n=[$2$]$のときである.
愛知工業大学 私立 愛知工業大学 2012年 第1問
次の$[ ]$を適当に補え.

(1)$|x+1|-3 |x-1|=4x+1$をみたす$x$は$x=[ア]$である.
(2)$3$つのさいころを同時に投げるとき,$2$つは同じで他の$1$つは異なる目が出る確率は$[イ]$であり,$3$つとも異なる目が出る確率は$[ウ]$である.
(3)$\displaystyle S_n=\sum_{k=1}^n \left( \frac{1}{2k-1}-\frac{1}{2k+1} \right)$とする.$S_n$を$n$の式で表すと$S_n=[エ]$であり,$\displaystyle S_n>\frac{2011}{2012}$となるような最小の自然数$n$の値は$n=[オ]$である.
(4)$xy$平面において,点$(0,\ 1)$を$\mathrm{A}$とする.点$\mathrm{P}$が直線$y=2x-1$上を動くとき,線分$\mathrm{AP}$を$1:2$に内分する点は直線$y=[カ]$上を動く.
(5)$\displaystyle \sin \theta+\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta=[キ]$,$\sin \theta=[ク]$である.
(6)$f(x)=\sqrt{x}$のとき,$f^\prime(x)=[ケ]$である.また,$\displaystyle \int_{\left( \frac{\pi}{2} \right)^2}^{\pi^2} \frac{\cos \sqrt{x}}{\sqrt{x}} \, dx=[コ]$である.
杏林大学 私立 杏林大学 2012年 第3問
$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす$\theta$と正の実数$p$に対して,$a_1=\log_4 (p \sin \theta)$,$a_2=\log_4 (\sin 2\theta)$,$a_3=\log_4 (\sin 3\theta)$とする.

(1)$a_1=a_2=a_3$となるのは,
\[ p=\frac{[ア]+\sqrt{[イ]}}{[ウ]},\quad \theta=\frac{[エ]}{[オ]} \pi \]
のときである.
(2)$3$つの数$a_1,\ a_2,\ a_3$がこの順に等差数列をなしているとする.このとき,
\[ p>\frac{[カ]}{[キ]} \]
となる.$p$をこの範囲で変化させたとき,$a_2+a_3$が最大となるのは,
\[ \cos^2 \theta=\frac{[クケ]+\sqrt{[コサシ]}}{[スセ]},\quad p=\frac{[ソ]+\sqrt{[コサシ]}}{[タチ]} \]
のときである.
(3)$p=2$で,$a_1,\ a_2,\ a_3$がこの順に等差数列をなしているとき,この数列の初項$a_1$および公差$d$は
\[ a_1=\frac{[ツ]}{[テ]},\quad d=\frac{[トナ]}{[ニ]} \]
である.この初項と公差を持つ等差数列$\{a_k\} (k=1,\ 2,\ 3,\ \cdots)$に対して,極限値
\[ \alpha=\lim_{n \to \infty} \sum_{k=1}^n 2^{2a_k} \]
を定義すると,$\alpha$は$2$次方程式
\[ x^2-[ヌ] x-[ネ]=0 \]
の解となっている.
東京理科大学 私立 東京理科大学 2012年 第2問
$r$を$0<r<1$を満たす実数として,次のように行列とベクトルを定める.
\[ A=\left( \begin{array}{cc}
r & 0 \\
2r-1 & 1-r
\end{array} \right) ,\quad P=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad Q=\left( \begin{array}{c}
0 \\
1
\end{array} \right) \]
またベクトル$Q_n=\left( \begin{array}{c}
a_n \\
b_n
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$を
\[ Q_1=\left( \begin{array}{c}
a_1 \\
b_1
\end{array} \right)=Q,\quad Q_n=AQ_{n-1}+P \quad (n \geqq 2) \]
として定める.

(1)$AP=\alpha P$,$AQ=\beta Q$を満たす定数$\alpha$,$\beta$を求めよ.
(2)$A^nP,\ A^nQ$を求めよ.
(3)$Q_n=\left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)$を求めよ.
(4)座標平面において,各$n=1,\ 2,\ 3,\ \cdots$に対し座標が$(a_n,\ 0)$である点を$X_n$,座標が$(a_n,\ b_n-a_n)$である点を$Y_n$とする.さらに,台形$X_nX_{n+1}Y_{n+1}Y_n$の面積を$S_n (n=1,\ 2,\ 3,\ \cdots)$とし,
\[ S=\sum_{n=1}^\infty S_n=S_1+S_2+\cdots +S_n+ \cdots \]
とする.

(i) $S$を求めよ.
(ii) $r$が$0<r<1$の範囲を動くとき,$S$の最大値とそのときの$r$の値を求めよ.
首都大学東京 公立 首都大学東京 2012年 第2問
$n$を正の整数とし,$n^2+3$と$n+1$の最大公約数を$d_n$とおく.以下の問いに答えなさい.

(1)$d_1,\ d_2,\ d_3,\ d_4,\ d_5$を求めなさい.
(2)$(n^2+3)-(n-1)(n+1)=4$を用いて,$d_n$は$1,\ 2,\ 4$のいずれかであることを示しなさい.
(3)$\displaystyle \sum_{n=1}^{610} d_n$を求めなさい.
(4)次の極限値を求めなさい.
\[ \lim_{k \to \infty} \frac{1}{k} \sum_{n=1}^k d_n \]
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。