タグ「数列の和」の検索結果

33ページ目:全498問中321問~330問を表示)
岡山県立大学 公立 岡山県立大学 2013年 第3問
次の問いに答えよ.

(1)$\displaystyle \sum_{k=1}^{2013} \frac{1}{\sum_{j=1}^k j}$を求めよ.
(2)実数$a,\ b$を係数とする$2$次方程式$x^2+ax+b=0$が異なる$2$つの虚数解をもつ.$1$つの虚数解を$\alpha$とすると,他の解は$2 \alpha-4+3i$と表すことができる.このとき,$a,\ b$の値を求めよ.ただし,$i$は虚数単位である.
(3)座標平面上を運動する点$\mathrm{P}$の時刻$t$における座標$(x,\ y)$が
\[ x=\cos 2t,\quad y=\sin t \]
で表されるとき,点$\mathrm{P}$の速さは
\[ v=\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \]
である.次の問いに答えよ.

(i) $v^2$を$\cos t$で表せ.
(ii) $v$の最大値を求めよ.
首都大学東京 公立 首都大学東京 2013年 第3問
原点を$\mathrm{O}$とする座標平面で,関数$y=\sqrt{x^2-1} (x \geqq 1)$のグラフを$C$とする.また,$t>1$を満たす実数$t$に対し,直線$x+y=t$と$C$との交点を$\mathrm{P}$,直線$x+y=t$と$x$軸との交点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)線分$\mathrm{PQ}$の長さ$f(t)$を求めなさい.
(2)次の極限値を求めなさい.
\[ \lim_{n \to \infty}\sum_{k=1}^n f \left( 1+\frac{k(t-1)}{n} \right) \frac{t-1}{\sqrt{2}n} \]
(3)線分$\mathrm{OP}$,$x$軸および$C$で囲まれる図形の面積を$S$とする.$S$を用いて点$\mathrm{P}$の座標を表しなさい.
京都府立大学 公立 京都府立大学 2013年 第3問
$0 \leqq a<1$とする.$xy$平面上の曲線$C$を$y=1+x \sqrt{1-x^2}$で,直線$\ell$を$y=1+ax$で定める.$C$と$\ell$で囲まれた部分を$x$軸のまわりに$1$回転してできる立体の体積を$a$の関数と考えて$V(a)$とする.以下の問いに答えよ.

(1)$-1 \leqq x \leqq 1$とするとき,不等式$2x \sqrt{1-x^2} \geqq x$を解け.
(2)$V(a)$を$a$を用いて多項式で表せ.
(3)$\displaystyle M_n=\frac{1}{2n} \sum_{k=1}^n V \left( \frac{k}{2n} \right)$とするとき,$\displaystyle \lim_{n \to \infty}M_n$を求めよ.
鳥取環境大学 公立 鳥取環境大学 2013年 第4問
次のようなゲームについて以下の問に答えよ.

カードが$5$枚伏せてある.$1$回の試行ではカードをかき混ぜて$1$枚をでたらめに選んでめくり,出たカードの番号に対応する賞品がもらえる.$5$種類の賞品をすべてあつめるのが目的である.ただし,めくったカードはその都度戻すものとする.
ここで,すでに$k$種類の賞品を持っている状況で試行を$1$回行ってまだ持っていない賞品がもらえる確率を$P_k$で表すとする($0 \leqq k \leqq 4$).$P_0=1$である.

(1)$P_1$の値を求めよ.
(2)$P_k$を$k$を用いた式で表せ.
(3)$5$回の試行で賞品が全種類そろう確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(4)試行を$5$回行った時点で得られている賞品が$4$種類だけである確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(5)ある事象が起きる確率が$x$であるとき,その事象が起きるまで繰り返し試行を行うならば,必要な試行回数の期待値は$\displaystyle \frac{1}{x}$だと知られている.ここで,賞品を$k$種類($0 \leqq k \leqq 4$)持っている状況から始めてまだ持っていない賞品のいずれか$1$つが得られるまでの試行回数の期待値を$Q_k$で表すとする($0 \leqq k \leqq 4$).$Q_k$を$P_k$を用いた式で表せ.さらに$k$を用いた($P_k$を使わない)形で式を表せ.
(6)賞品を$n$種類持っている状況から始めて賞品が$m$種類そろうまでの試行回数の期待値は$\displaystyle \sum_{k=n}^{m-1} Q_k$となる.ただし,$0 \leqq n<m \leqq 4$である.賞品を$1$つも持っていない状況から$4$種類そろうまでと,$4$種類そろった状況から最後の$1$種類が出るまでと,試行回数の期待値はどちらが大きいか.計算して求めよ.
横浜市立大学 公立 横浜市立大学 2013年 第1問
以下の問いに答えよ.

(1)$a,\ b,\ c$を実数として,$A,\ B,\ C$を
\[ A=a+b+c,\quad B=a^2+b^2+c^2,\quad C=a^3+b^3+c^3 \]
とおく.このとき$abc$を$A,\ B,\ C$を用いて表せ.
(2)$n$を自然数とする.このとき
\[ \sum_{k=0}^{n-1} \frac{\comb{2n}{2k+1}}{2k+2} \]
を求めよ.
(3)ボタンを押すと$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$いずれかの文字が画面に表示される機械がある.その機械では,$\mathrm{X}$と$\mathrm{Y}$が表示される確率は,等しくかつ$\mathrm{Z}$が表示される確率の$2$倍である,とする.いま,ボタンを$5$回続けて押す.このとき,($\mathrm{XYZYX}$のように)$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$すべての文字が少なくとも$1$回表示される確率を求めよ.
(4)逆行列をもつ$2$次の正方行列$A$が表す$1$次変換が,円$C:(x-1)^2+(y-\sqrt{3})^2=3^2$上の点を$C$上の点に移すとき,$A$を求めよ.ただし,$A$は単位行列と異なる行列とする.
(5)定積分
\[ \int_0^{\frac{\pi}{2}} \frac{\sqrt{2}}{\sin x+\cos x} \, dx \]
を求めよ.
秋田県立大学 公立 秋田県立大学 2013年 第4問
初項$6$,公差$3$の等差数列を$\{a_n\}$とし,$\{b_n\}$,$\{c_n\}$,$\{d_n\}$を一般項が次の式で定められる数列とする.

$\displaystyle b_n=\sum_{k=1}^n a_k \quad (n=1,\ 2,\ 3,\ \cdots)$
$\displaystyle c_n=\frac{1}{b_n} \quad (n=1,\ 2,\ 3,\ \cdots)$
$\displaystyle d_n=\sum_{k=1}^n c_k \quad (n=1,\ 2,\ 3,\ \cdots)$

このとき,以下の設問に答えよ.$(1)$は解答のみでよく,$(2)$~$(4)$は解答とともに導出過程も記述せよ.

(1)$a_n$を$n$を用いて表せ.
(2)$b_n$を$n$を用いて表せ.
(3)$c_n$は実数$s,\ t$を用いて$\displaystyle c_n=\frac{s}{n}+\frac{t}{n+3}$と表せる.$s,\ t$を求めよ.
(4)$\displaystyle \lim_{n \to \infty} d_n$を求めよ.
岡山大学 国立 岡山大学 2012年 第2問
正$n$角形の頂点を$\mathrm{A}_0$,$\mathrm{A}_1$,$\cdots$,$\mathrm{A}_{n-1}$とする.頂点$\mathrm{A}_1$,$\mathrm{A}_2$,$\cdots$,$\mathrm{A}_{n-1}$から$2$点をとり,それらと$\mathrm{A}_0$を頂点とする三角形を作る.このようにして得られる三角形の総数を$a_n$,そのうちの二等辺三角形の総数を$b_n$とする.ただし正三角形は二等辺三角形とみなす.このとき以下の問いに答えよ.

(1)$a_6$および$b_6$を求めよ.
(2)整数$m \geqq 3$に対し,$S=\displaystyle\sum_{k=3}^m a_k$を求めよ.
(3)$b_9$を求めよ.
埼玉大学 国立 埼玉大学 2012年 第4問
$a>0$とし,関数
\[ f(x) = e^{-ax} \sin (\sqrt{3}ax) \]

\[ f^{\ \prime\prime}(x) + f^{\ \prime}(x) +f(x) = 0 \]
を満たすとする.

(1)$a$を求めよ.
(2)$x>0$において$f(x)$が極大となる$x$を小さい方から$x_1,\ x_2,\ x_3,\ \cdots$とする.$x_n$を求めよ.
(3)(2)で求めた$x_n$に対し,$\displaystyle \sum_{n=1}^\infty f(x_n)$を求めよ.
横浜国立大学 国立 横浜国立大学 2012年 第1問
$xy$平面上に$n$個の点P$_k(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots,\ n)$がある.
\[ a=\sum_{k=1}^n x_k^2, \quad b=\sum_{k=1}^n y_k^2, \quad c= \sum_{k=1}^n x_ky_k \]
とおく.さらに,P$_k$と直線$\ell: x\cos \theta + y\sin \theta = 0$の距離を$d_k$とし,
\[ L = \sum_{k=1}^n d_k^2 \]
とおく.次の問いに答えよ.

(1)$L$を$a,\ b,\ c,\ \theta$を用いて表せ.
(2)$\theta$が$0 \leqq \theta < \pi$の範囲を動くとき,$L$の最大値と最小値を$a,\ b,\ c$を用いて表せ.
(3)$a \neq b$または$c \neq 0$のとき,$L$を最大にする$\ell$を$\ell_1$,最小にする$\ell$を$\ell_2$とする.$\ell_1$と$\ell_2$は直交することを示せ.
埼玉大学 国立 埼玉大学 2012年 第4問
$n=1,\ 2,\ 3,\ \cdots$に対し,
\[ I_n = \int_0^{\frac{\pi}{4}} \tan^{2n} x\, dx \]
とおく.

(1)$I_n+I_{n+1}$を計算せよ.
(2)$\displaystyle \lim_{n \to \infty} I_n = 0$を示せ.
(3)$\displaystyle \sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1}$を求めよ.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。