タグ「数列の和」の検索結果

32ページ目:全498問中311問~320問を表示)
星薬科大学 私立 星薬科大学 2013年 第6問
数列$\{a_n\}$が$\displaystyle a_1=\frac{1}{41}$,$a_{n+1}+2na_{n+1}a_n-a_n=0$を満たしているとき,
\[ \frac{1}{a_5}=[][],\quad \sum_{n=1}^{50} \frac{1}{a_n}=\ \fboxsep=0pt\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[10mm][c]{\small{}}}\hspace{-0.04em}\fbox{\rule[- 0.25em]{0pt}{1.1em}\makebox[10mm][c]{\small{}}}\hspace{-0.04em}\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox [10mm][c]{\small{}}}\hspace{-0.04em}\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[10mm][c]{\small{}}}\hspace{-0.04em}\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[10mm][c]{\small{}}} \]
である.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

サッカーの国際大会に日本,$\mathrm{A}$国および$\mathrm{B}$国の$3$ヶ国が参加し,優勝国は次のように決定される.
(i) $3$つの国のうち$2$つの国が試合をする.勝った国が残りの$1$つの国と試合をし, $2$連勝する国が生じるまで試合を繰り返す.この連勝国を優勝国とし,大会を終了する.
(ii) 各試合において,引き分けは無く,必ず勝敗が決まる.
日本が$\mathrm{A}$国,$\mathrm{B}$国に勝つ確率をそれぞれ$\displaystyle \frac{1}{2},\ \frac{1}{3}$とし,$\mathrm{A}$国が$\mathrm{B}$国に勝つ確率は$\displaystyle \frac{2}{3}$とする.第$1$戦は日本と$\mathrm{A}$国が対戦する.
第$2$戦で日本が優勝する確率は$[ ]$であり,第$3$戦で日本が優勝する確率は$[ ]$であり,第$4$戦で日本が優勝する確率は$[ ]$であり,第$5$戦で日本が優勝する確率は$[ ]$である.ゆえに第$3n+2$戦($n$は$0$以上の整数)で日本が優勝する確率$p_n$は$p_n=[ ]$となる.このとき$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n p_k=[ ]$となる.一方,第$7$戦で日本が優勝する確率は$[ ]$となる.第$3n+1$戦($n$は$1$以上の整数)で日本が優勝する確率$q_n$は$q_n=[ ]$となる.このとき$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n q_k=[ ]$となる.また第$3n$戦($n$は$1$以上の整数)で日本が優勝する確率$r_n$は$r_n=[ ]$となる.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2013年 第1問
$e$を自然対数の底,$b$を実数として,数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が条件$①$および$②$を満たしているとき,次の問いに答えなさい.

$\displaystyle a_1=\frac{e-e^2+b}{1-e} \qquad \cdots\cdots①$
$a_{n+1}=ea_n+b \qquad\quad\!\;\!\!\, \cdots\cdots②$

(1)$b=11$のとき,$a_n$を$n$の式で表すと,$a_n=[$1$]$となる.また,
\[ \sum_{k=1}^n \log_e \left( a_k+\frac{11}{e-1} \right)=[$2$] \]
となる.
(2)$b=e^{11}$のとき,$\displaystyle \sum_{k=1}^n a_k$の値は$n=[$3$]$のとき最小となる.
九州産業大学 私立 九州産業大学 2013年 第4問
数列$\{a_n\}$の初項$a_1$から第$n$項$a_n$までの和を$S_n$とするとき,
\[ S_n=\frac{1}{3}-(n+2)a_n \]
を満たすとする.

(1)$a_1$の値は$[ア]$である.
(2)$\displaystyle \frac{a_{n+1}}{a_n}$を$n$の式で表すと$\displaystyle \frac{a_{n+1}}{a_n}=[イ]$である.
(3)$\displaystyle \frac{a_n}{a_1}$を$n$の式で表すと$\displaystyle \frac{a_n}{a_1}=[ウ]$である.
(4)数列$\{a_n\}$の一般項は$a_n=[エ]$である.
(5)$\displaystyle \sum_{n=1}^{10} \frac{1}{a_n}$の値は$[オ]$である.
杏林大学 私立 杏林大学 2013年 第4問
$[オ]$,$[タ]$,$[チ]$,$[ト]$,$[ナ]$の解答は対応する解答群の中から最も適当なものを$1$つ選べ.

条件$a_1=0$,$a_2=0$と漸化式
\[ a_{n+2}-3a_{n+1}+2a_n=2^n \log_2 \frac{(n+1)^2}{n} \cdots\cdots (*) \]
$(n=1,\ 2,\ 3,\ \cdots)$で定められる数列の一般項を,以下の要領で求めてみよう.

(1)漸化式$(*)$より,ベクトル$\overrightarrow{b_n}=\left( \begin{array}{c}
a_{n+1} \\
a_n
\end{array} \right)$に対して
\[ \overrightarrow{b_{n+1}}=A \overrightarrow{b_n}+\left( \begin{array}{c}
2^n \log_2 \displaystyle\frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
が成立する.ただし,行列$A$は$A=\left( \begin{array}{cc}
[ア] & [イウ] \\
[エ] & 0
\end{array} \right)$である.
この式の両辺に,$A$の逆行列$A^{-1}$を左から$n$回かけると
\[ (A^{-1})^n \overrightarrow{b_{n+1}}=(A^{-1})^{n-1} \overrightarrow{b_n}+(A^{-1})^n \left( \begin{array}{c}
\displaystyle 2^n \log_2 \frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
となり,$(A^{-1})^{n-1} \overrightarrow{b_n}$の階差数列がわかる.これより,$2$以上の整数$n$に対し,
\[ (A^{-1})^{n-1} \overrightarrow{b_{n}}=\overrightarrow{b_1}+\sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right) \cdots\cdots (**) \]
を得る.
(2)$(**)$式の右辺第一項は$\overrightarrow{b_1}=\left( \begin{array}{c}
[カ] \\
[キ]
\end{array} \right)$であり,$\displaystyle A^{-1}=\frac{1}{2} \left( \begin{array}{cc}
[ク] & [ケ] \\
[コサ] & [シ]
\end{array} \right)$は行列$P=\left( \begin{array}{cc}
2 & 1 \\
1 & 1
\end{array} \right)$を用いて
\[ A^{-1}=P \left( \begin{array}{cc}
\displaystyle\frac{[ス]}{[セ]} & 0 \\
0 & [ソ]
\end{array} \right) P^{-1} \]
と表されるので,$(**)$式右辺の和の項について,次式が成立する.
\[ \sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right)=P \left( \begin{array}{c}
\log_2 [タ] \\
-2^n \log_2 [チ]
\end{array} \right) \]
(3)$(2)$の結果と,行列$A$が同じ$P$を用いて
\[ A=P \left( \begin{array}{cc}
[ツ] & 0 \\
0 & [テ]
\end{array} \right) P^{-1} \]
と表わされることに注意すると,$(**)$式の両辺に行列$A$を左から$(n-1)$回かけて得られる$\overrightarrow{b_n}$から,一般項$a_n$は
\[ a_n=2^{[ト]} \log_2 [ナ] \]
($n=2,\ 3,\ 4,\ \cdots$)となる.

$[オ]$,$[ト]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan n+1 & \nagamarushi 1-n \\
\nagamarugo -n & \nagamaruroku -n-1 \phantom{AA} & \nagamarushichi \displaystyle\frac{n(n+1)}{2} \phantom{AA} & \nagamaruhachi n^2-1 \\
\nagamarukyu \displaystyle\frac{1}{6}n(n+1)(2n+1) & & &
\end{array} \]
$[タ]$,$[チ]$,$[ナ]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan \displaystyle\frac{n+1}{n} \phantom{AA} & \nagamarushi \displaystyle\frac{4n-6}{n} \\
\nagamarugo n^2-4n+5 & \nagamaruroku (n-1)! \phantom{AA} & \nagamarushichi n! \phantom{AA} & \nagamaruhachi n!-1 \\
\nagamarukyu (n-1) \times n! \phantom{AA} & \nagamarurei n \times n! & &
\end{array} \]
産業医科大学 私立 産業医科大学 2013年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)$100$円,$50$円,$10$円の硬貨がそれぞれたくさんあるとする.ある品物を買うのに$2300$円かかるとき,このお金による支払い方の総数は$[ ]$である.
(2)整式$P(x)$を$x^2-4x+3$で割ったときの余りは$x+1$であり,$x^2-3x+2$で割ったときの余りは$3x-1$である.$P(x)$を$x^3-6x^2+11x-6$で割ったときの余りは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \frac{\sum_{k=1}^{2n} (k+n)^2}{\sum_{k=1}^{2n} k^2}$の値は$[ ]$である.
(4)$\sqrt{x}+\sqrt{y}=1$で表される座標平面上の曲線を$C$とする.曲線$C$上の$x$座標が$s (0<s<1)$である点における接線を$\ell$とする.接線$\ell$と曲線$C$および$x$軸,$y$軸とで囲まれた部分を,$x$軸のまわりに$1$回転してできる回転体の体積の最小値は$[ ]$である.また,そのときの$s$の値は$[ ]$である.
(5)原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$を結ぶ線分上に点$\mathrm{P}$がある.$\theta=\angle \mathrm{AOP}$とし,線分$\mathrm{OP}$の長さを$r$とするとき,$r$は$\theta$の関数として$r=f(\theta)$と表せる.このとき定積分$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta) \, d\theta$の値は$[ ]$であり,$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta)^2 \cos \theta \, d\theta$の値は$[ ]$である.
(6)$\mathrm{A}$が$1$枚のカードを,$\mathrm{B}$が$4$枚のカードを持っている.表が出る確率と裏が出る確率がそれぞれ$\displaystyle \frac{1}{2}$の偏りのないコインを投げて,表が出れば$\mathrm{A}$は$\mathrm{B}$からカードを$1$枚もらう.裏が出れば$\mathrm{A}$は$\mathrm{B}$にカードを$1$枚わたす.ただし,手もとにカードがなければわたさなくてよい.この試行を$4$回くり返した後,$\mathrm{A}$の手もとに残るカードの枚数の期待値は$[ ]$である.
東京女子大学 私立 東京女子大学 2013年 第3問
数列$\{a_n\}$を$a_1=2$,$a_{n+1}=a_n+(n+2)2^n (n=1,\ 2,\ 3,\ \cdots)$によって定めるとき,以下の設問に答えよ.

(1)$a_2,\ a_3,\ a_4$を求めよ.
(2)$\displaystyle \sum_{k=1}^n (k+2)2^k$を求めよ.
(3)一般項$a_n$を求めよ.
早稲田大学 私立 早稲田大学 2013年 第3問
$a,\ b$を正の定数とする.

(1)$\displaystyle \int_0^{2\pi} |a \sin x+b \cos x| \, dx$を求めよ.
(2)$\displaystyle \lim_{n \to \infty} \sum_{k=n+1}^{2n} \int_{\frac{2(k-1) \pi}{n}}^{\frac{2k \pi}{n}} \left( \log \frac{k}{n} \right) |a \sin nx+b \cos nx| \, dx$を求めよ.
早稲田大学 私立 早稲田大学 2013年 第1問
$[ア]$~$[オ]$にあてはまる数または式を記入せよ.

(1)どのような$2$次関数$f(x)$に対しても
\[ \int_0^2 f(x) \, dx \]
の値は,$f(0)$,$f(1)$,$f(2)$を用いて$[ア]$と表せる.
(2)$k$を実数とする.$xy$平面上の直線$y-2=k(x-1)$と放物線$y=x^2$によって囲まれる図形の面積は,$k=[イ]$のとき最小値$[ウ]$をとる.
(3)$p$を$5$以上の素数とする.$p^3$を$p-4$で割った余りが$4$であるとき,$p=[エ]$である.
(4)$\displaystyle \sum_{n=1}^{2013} \frac{\sin \displaystyle\frac{2n\pi}{7}-\cos \displaystyle\frac{2n\pi}{7}}{|\sin \displaystyle\frac{2n\pi|{7}-\cos \displaystyle\frac{2n\pi}{7}}}=[オ]$
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)不等式$x |x+2|<2x$の解は$[ア]$である.

(2)$a$を実数とする.$\displaystyle \frac{3+i}{1+ai}$の実部と虚部の和が$0$であるとき,$a=[イ]$である.ただし,$i$は虚数単位とする.
(3)座標平面上の点$(2,\ 1)$から円$x^2+y^2=1$へ引いた接線の方程式は$y=1$と$y=[ウ]$である.
(4)${128}^{\frac{1}{6}},\ 8^{\frac{2}{5}},\ {81}^{\frac{1}{5}}$のうち最大のものは$[エ]$である.
(5)$\cos {165}^\circ$の値は$[オ]$である.
(6)平面上に三角形$\mathrm{OAB}$と点$\mathrm{P}$があり,$\overrightarrow{\mathrm{OP}}+2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たしている.直線$\mathrm{AB}$と直線$\mathrm{OP}$との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}}$である.
(7)数列$\{a_k\}$は$a_1=0$と漸化式$a_{k+1}=2a_k+1 (k=1,\ 2,\ 3,\ \cdots)$で定められている.このとき,$\displaystyle \sum_{k=1}^n \log_8 (1+a_k)=[ク]$である.
(8)数字の$1$が書かれたカードが$1$枚,数字の$2$が書かれたカードが$2$枚,数字の$3$が書かれたカードが$3$枚ある.この$6$枚のカード全部を$1$列に並べるとき,数字の$2$が書かれたカードが連続して並ぶ確率は$[ケ]$である.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。