タグ「数列の和」の検索結果

26ページ目:全498問中251問~260問を表示)
愛知県立大学 公立 愛知県立大学 2014年 第1問
$1$から$5$までの$5$つの自然数のうち,いずれかの$1$つの数字が確率的に表示される$3$つの装置$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.各装置$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$で数字$n (1 \leqq n \leqq 5)$が表示される確率をそれぞれ$P_{\mathrm{A}}(n)$,$P_{\mathrm{B}}(n)$,$P_{\mathrm{C}}(n)$とし,
\[ \sum_{n=1}^5 P_{\mathrm{A}}(n)=\sum_{n=1}^5 P_{\mathrm{B}}(n)=\sum_{n=1}^5 P_{\mathrm{C}}(n)=1 \]
が成り立っている.$a,\ b,\ c,\ k$を実数とし,$f(n)={2}^{{-(n-3)}^2}$とするとき,以下の問いに答えよ.

(1)$P_{\mathrm{A}}(n)=a \cdot f(n)$であるとき,装置$\mathrm{A}$で各数字が表示される確率と,表示される数字の期待値を求めよ.
(2)$P_{\mathrm{B}}(n)={2}^{-2n+5} \cdot b \cdot f(n)$であるとき,装置$\mathrm{B}$と$(1)$で確率を求めた装置$\mathrm{A}$の表示が,両方とも偶数である確率を求めよ.
(3)$P_{\mathrm{C}}(n)={2}^{-{n}^2+kn} \cdot c \cdot f(n)$であり,$(1)$の$P_{\mathrm{A}}(n)$が最大となるときの$n$を$m$とする.このとき,$P_{\mathrm{C}}(n)$が最大となる$n$と$m$が等しくなる$k$の範囲を求めよ.
富山県立大学 公立 富山県立大学 2014年 第3問
$a,\ b$は定数とする.関数$f(x)=e^{-x} \sin x$,$g(x)=e^{-x} (a \cos x+b \sin x)$について,次の問いに答えよ.

(1)すべての$x$に対して$\displaystyle \frac{d}{dx}g(x)=f(x)$となるように$a,\ b$の値を定めよ.
(2)$(2k-1) \pi \leqq x \leqq 2k \pi (k=1,\ 2,\ 3,\ \cdots)$の範囲で,曲線$y=f(x)$と$x$軸で囲まれた図形の面積$S_k$を$k$の式で表せ.
(3)極限$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n S_k$を求めよ.
宮城大学 公立 宮城大学 2014年 第1問
次の空欄$[ア]$から$[キ]$にあてはまる数や式を書きなさい.

(1)次の式を因数分解すれば,
\[ 2x^2+3xy+y^2+x-y-6=([ア])([イ]) \]
となる.
(2)$\mathrm{MIYAGIDAI}$のすべての文字を並べてできる順列のうち,$5$個の母音が隣り合わない場合は$[ウ]$通りある.
(3)$i$を虚数単位とするとき,
$(1+i)^2=[エ]i$であり,$(1+i)^{10}=[オ]i$である.すると,
$(1+i)^{2014}+(1-i)^{2014}=[カ]$となる.
(4)$\displaystyle \sum_{k=1}^{99} \frac{1}{\sqrt{k+1}+\sqrt{k}}=[キ]$である.
奈良県立医科大学 公立 奈良県立医科大学 2014年 第12問
$f(x)=(x-a_1)(x-a_2)(x-a_3)$とし,$\displaystyle g(x)=\sum_{k=1}^3 \frac{f(x) \cdot b_k}{f^\prime(a_k) \cdot (x-a_k)}$とする.$g(x)$を$px^2+qx+r$の形で表したときの$p,\ q,\ r$の値を求めよ.ただし,$a_1=1$,$a_2=-2$,$a_3=-1$,$b_1=12$,$b_2=3$,$b_3=4$とする.
名古屋市立大学 公立 名古屋市立大学 2014年 第4問
$xy$平面において,曲線$y=nx^2$($n$は自然数,$x \geqq 0$)を$C_n$とし,直線$y=1$を$L$とする.$2$つの曲線$C_n$,$C_{n+1}$および$L$で囲まれた図形の面積を$S_n$とする.次の問いに答えよ.

(1)$S_n$を求めよ.
(2)任意の$n$に対して$S_n>S_{n+1}$が成り立つことを示せ.
(3)$\displaystyle \sum_{k=1}^n S_k>\frac{1}{2}$となる最小の$n$を求めよ.
横浜市立大学 公立 横浜市立大学 2014年 第4問
$n$を$4$以上の整数とする.$1$番から$n$番までの番号がふられたボールが$1$つずつある.このとき,以下の問いに答えよ.

(1)以下のような操作でボールを$1$列に並べる:

(i) $1$番のボールを適当な位置におく.
(ii) $2$番のボールを$1$番のボールの左または右に同じ確率でおく.
(iii) $3$番のボールをすでに並んでいる$2$つのボールの左または間または右に同じ確率でおく.
\mon[$\tokeishi$] 以下$n$番まで番号順に,$k$番のボールを,すでに並んでいるボールの一番左または間または一番右に同じ確率でおく,ことを繰り返す.

例えば,左から$2$番,$1$番,$3$番のボールが並んでいるとき,$4$番のボールが$2$番と$1$番の間におかれる確率は$\displaystyle \frac{1}{4}$である.
$n$番のボールをおき終えたとき,$i$番のボールが左から$j$番目に並ぶ確率は$\displaystyle \frac{1}{n}$であることを証明せよ.ただし,$i$と$j$は$1$以上,$n$以下の整数とする.
(2)$(1)$のボールの列を,(左から)番号順に並び替えるため,以下の操作を考える:
隣り合った$2$つのボールの組で,左のボールの番号が右のそれより大きなもの(入れ替え可能な組と呼ぶ)が存在するとき,そのようなボールの組を$1$つ選び,入れ替える.
入れ替え可能な組が複数あった場合に,入れ替える組をどのように選んだとしても,この操作を繰り返すことにより,すべてのボールの列は,必ず番号順の列になることを証明せよ.
(3)$(2)$の操作の回数は,入れ替える組の選び方とは無関係であることを証明せよ.
(4)$(2)$においてボールの列を番号順に並べ替えるとき,$i$番のボールを,より番号の小さいボールと入れ替える回数の期待値を$E_i$とする.このとき,
\[ \sum_{i=1}^n E_i \]
を求めよ.
北九州市立大学 公立 北九州市立大学 2014年 第3問
$\displaystyle S_n=1-\frac{1}{2}+\frac{1}{3}- \cdots +\frac{(-1)^{n-1}}{n} (n=1,\ 2,\ 3,\ \cdots)$と定義する.以下の問いに答えよ.

(1)$x \neq -1$のとき,$\displaystyle \frac{1}{x+1}=\sum_{k=0}^{n-1} (-x)^k+\frac{(-x)^n}{x+1}$が成立することを証明せよ.
(2)$n=1,\ 2,\ 3,\ \cdots$のとき,不等式$\displaystyle -\frac{1}{n+1} \leqq \int_0^1 \frac{(-x)^n}{x+1} \, dx \leqq \frac{1}{n+1}$が成立することを証明せよ.
(3)$\displaystyle S_n=\sum_{k=0}^{n-1} \int_0^1 (-x)^k \, dx$が成立することを証明せよ.
(4)$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
高崎経済大学 公立 高崎経済大学 2014年 第4問
数列$1,\ 1,\ 2,\ 1,\ 2,\ 4,\ 1,\ 2,\ 4,\ 8,\ 1,\ 2,\ 4,\ 8,\ 16,\ 1,\ 2,\ \cdots$の第$n$項を$a_n$とする.以下の各問に答えよ.

(1)$a_{50}$を求めよ.
(2)$\displaystyle \sum_{k=1}^{50} a_k$を求めよ.
(3)$a_m-a_{m+1}>99999$を満たす最小の自然数$m$の値を求めよ.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
県立広島大学 公立 県立広島大学 2014年 第3問
初項$3$,公比$2$の等比数列を$\{a_n\}$とし,
\[ S_n=\sum_{i=1}^n (\log_{a_i}2) \cdot (\log_{a_{i+1}}2) \quad (n=1,\ 2,\ 3,\ \cdots) \]
とする.次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.

(2)$\displaystyle \frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1}$が$x$についての恒等式になる定数$A,\ B$を求めよ.

(3)$S_n<\log_32$となることを示せ.
(4)$\displaystyle |S_n-\log_32|<\frac{1}{1000}$となる最小の$n$を求めよ.
京都大学 国立 京都大学 2013年 第2問
$N$を$2$以上の自然数とし,$a_n \ (n=1,\ 2,\ \cdots)$を次の性質$(ⅰ),\ (ⅱ)$をみたす数列とする.

(i) $a_1=2^N-3$
(ii) $n=1,\ 2,\ \cdots$に対して,

$a_n$が偶数のとき$\displaystyle a_{n+1}=\frac{a_n}{2}$,$a_n$が奇数のとき$\displaystyle a_{n+1}=\frac{a_n-1}{2}$.

このときどのような自然数$M$に対しても
\[ \sum_{n=1}^M a_n \leqq 2^{N+1}-N-5 \]
が成り立つことを示せ.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。