タグ「数列の和」の検索結果

21ページ目:全498問中201問~210問を表示)
大分大学 国立 大分大学 2014年 第2問
数列の和について次の一連の問いに答えなさい.

(1)$\displaystyle \sum_{k=1}^n k=\frac{1}{2}n(n+1)$を示しなさい.
(2)多項式$(k+1)^3-k^3$の展開を利用して$\displaystyle \sum_{k=1}^n k^2=\frac{1}{6}n(n+1)(2n+1)$を示しなさい.
(3)$\displaystyle \sum_{k=1}^n k^3=\frac{1}{4}n^2(n+1)^2$を示しなさい.
(4)$\displaystyle \sum_{k=1}^n k^4$を求めなさい.結果は因数分解すること.
東京海洋大学 国立 東京海洋大学 2014年 第2問
$a \neq 1$に対して$A=\left( \begin{array}{cc}
0 & 1 \\
-a^2 & 2a
\end{array} \right)$とする.

(1)$E-A$の逆行列$B$を求めよ.ただし$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して,
\[ E+A+A^2+\cdots +A^n=B(E-A^{n+1}) \]
となることを示せ.
(3)$A^n=\left( \begin{array}{cc}
-(n-1)a^n & na^{n-1} \\
-na^{n+1} & (n+1)a^n
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$を数学的帰納法を用いて示せ.
(4)$\displaystyle \sum_{k=1}^n ka^{k-1}$を求めよ.
東京海洋大学 国立 東京海洋大学 2014年 第5問
$k=0,\ 1,\ 2,\ \cdots$に対して,$\displaystyle I_k=\int_0^{\log 2} (e^x-1)^k \, dx$とおく.

(1)$0 \leqq x \leqq \log 2$のとき,$\displaystyle 0 \leqq e^x-1 \leqq \frac{x}{\log 2}$が成り立つことを示せ.ただし,$e>2$であることを用いてよい.
(2)$I_k+I_{k+1}$を$k$を用いて表せ.
(3)$\displaystyle 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +(-1)^n \frac{1}{n+1}=I_0+(-1)^n I_{n+1} (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(4)$\displaystyle \lim_{n \to \infty} \sum_{k=0}^n (-1)^k \frac{1}{k+1}$を求めよ.
徳島大学 国立 徳島大学 2014年 第4問
$p$を素数とする.初項,公差がともに$5p$の等差数列を$\{a_n\}$とする.数列$\{b_n\}$は公差が$p$の等差数列で$\displaystyle \sum_{n=1}^p a_n=a_1+a_p+5 \sum_{n=1}^p b_n$を満たす.

(1)$b_1$を求めよ.
(2)$p=2$のとき,$\displaystyle \frac{a_n}{b_n}$の値が自然数となるような$n$をすべて求めよ.
(3)$p \geqq 3$とする.$\displaystyle \frac{a_n}{b_n}$の値が自然数となるような$p$と$n$の組$(p,\ n)$をすべて求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
秋田大学 国立 秋田大学 2014年 第2問
条件$a_1=0$,$a_{n+1}=4a_n+3 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.関数$f_n(x)$と$g(x)$が
\[ \begin{array}{l}
f_n(x)=a_nx^2+a_n+1 \\
g(x)=x^3+3x^2-9x+4 \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定義されるとき,次の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.また,$\displaystyle \sum_{k=1}^n a_k$を求めよ.
(2)関数$y=|f_2(x)-g(x)|$のグラフをかけ.また,$-3 \leqq x \leqq 3$の範囲で$y$の値の最大値とそのときの$x$の値を求めよ.
福井大学 国立 福井大学 2014年 第2問
次の条件によって定められる数列$\{a_n\}$がある.
\[ a_1=2,\quad 3a_{n+1}-4a_n+1=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,以下の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$\displaystyle \frac{a_{n+1}}{a_n}$の小数部分を$b_n$とおくとき,数列$\{b_n\}$の一般項を求めよ.
(3)$\displaystyle \sum_{k=1}^n \frac{1}{b_k}$を求めよ.
山形大学 国立 山形大学 2014年 第4問
$\triangle \mathrm{A}_1 \mathrm{B}_1 \mathrm{C}$は,$\mathrm{B}_1 \mathrm{C}=\sqrt{2}$,$\displaystyle \angle \mathrm{B}_1 \mathrm{A}_1 \mathrm{C}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{A}_1 \mathrm{B}_1 \mathrm{C}=\theta \left( 0<\theta<\frac{\pi}{2} \right)$を満たす.下図のように,点$\mathrm{A}_1$から辺$\mathrm{B}_1 \mathrm{C}$に下ろした垂線を$\mathrm{A}_1 \mathrm{B}_2$とし,点$\mathrm{B}_2$から辺$\mathrm{A}_1 \mathrm{C}$に下ろした垂線を$\mathrm{B}_2 \mathrm{A}_2$とする.次に,点$\mathrm{A}_2$から辺$\mathrm{B}_1 \mathrm{C}$に下ろした垂線を$\mathrm{A}_2 \mathrm{B}_3$とし,点$\mathrm{B}_3$から辺$\mathrm{A}_1 \mathrm{C}$に下ろした垂線を$\mathrm{B}_3 \mathrm{A}_3$とする.この操作を繰り返し,辺$\mathrm{A}_1 \mathrm{C}$上に点$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$,$\cdots$を,辺$\mathrm{B}_1 \mathrm{C}$上に点$\mathrm{B}_2$,$\mathrm{B}_3$,$\mathrm{B}_4$,$\cdots$を定める.自然数$n$に対し,$\triangle \mathrm{A}_n \mathrm{B}_n \mathrm{B}_{n+1}$の面積を$S_n$とし,これらの面積の総和を$\displaystyle T=\sum_{n=1}^\infty S_n$とする.このとき,次の問いに答えよ.
(図は省略)

(1)$S_1=\sin \theta \cos^3 \theta$,$S_2=\sin^5 \theta \cos^3 \theta$を示し,一般項$S_n$を求めよ.

(2)$\displaystyle T=\frac{\sin \theta \cos \theta}{1+\sin^2 \theta}$を示せ.

(3)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,$T$の最大値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2014年 第1問
以下の問に答えよ.

(1)$\displaystyle \left[ \frac{1}{3}x+1 \right]=[2x-1]$を満たす実数$x$の範囲を求めよ.ここで,$[x]$は$x$を超えない最大の整数である.
(2)$\triangle \mathrm{ABC}$と,$\overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}+k \overrightarrow{\mathrm{MC}}=\overrightarrow{\mathrm{0}} (k>0)$を満たす点$\mathrm{M}$が存在する.点$\mathrm{A}$と点$\mathrm{M}$を通る直線と辺$\mathrm{BC}$の交点を$\mathrm{N}$とする.$\displaystyle \frac{3}{4} \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{BN}}$のとき,$k$はいくらか.
(3)初項が正の数である等比数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が,漸化式
\[ a_{n+1}+\left( \frac{1}{2} \right)^{2n+1}=3a_1a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たしているとき,以下の問に答えよ.

(i) $\{a_n\}$の初項と公比を求めよ.
(ii) 無限級数$\displaystyle \sum_{k=1}^\infty a_k$が収束するかどうか調べよ.収束する場合には,その和を求めよ.
福井大学 国立 福井大学 2014年 第3問
次の条件によって定められる数列$\{a_n\}$がある.
\[ a_1=2,\quad 3a_{n+1}-4a_n+1=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,以下の問いに答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$\displaystyle \frac{a_{n+1}}{a_n}$の小数部分を$b_n$とおくとき,数列$\{b_n\}$の一般項を求めよ.
(3)$\displaystyle \sum_{k=1}^n \frac{1}{b_k}$を求めよ.
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。