タグ「数列の和」の検索結果

15ページ目:全498問中141問~150問を表示)
立教大学 私立 立教大学 2015年 第2問
$a$は$0$でない実数,$r$は$0<r<1$を満たす実数とする.初項$a$,公比$r$の等比数列$a_1,\ a_2,\ a_3,\ \cdots$に対し,
\[ S=\sum_{n=1}^\infty a_n,\quad T=\sum_{n=1}^\infty a_na_{n+1} \]
とおく.このとき,次の問いに答えよ.

(1)$S$と$T$をそれぞれ$a$と$r$を用いて表せ.
(2)$S=T$のとき,$a$を$r$を用いて表せ.
(3)$S=T$のとき,$S$を$r$を用いて表せ.
(4)$S=T$のとき,$S$の最小値と,最小値を与える$r$の値をそれぞれ求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
袋に赤玉が$2$個と白玉が$1$個入っている.袋から玉を$1$個取り出し玉の色を見て袋に戻す.このとき取り出した玉と同色の玉をもう$1$つ袋に加える.この操作を繰り返して行う.

(1)$n$回目の操作を終えたとき,それまでに赤玉を取り出した回数が$k$回($0 \leqq k \leqq n$)であったとする.このとき,$n+1$回目の操作で赤玉を取り出す確率を$p_n(k)$とおくと,$p_n(k)=[ナ]$となる.
(2)$n$回目の操作を終えるまでに赤玉を取り出す回数が$k$回($0 \leqq k \leqq n$)である確率を$q_n(k)$とおく.たとえば,$\displaystyle q_1(1)=\frac{2}{3}$,$q_4(2)=[ニ]$となる.$n$回の操作中$j$回目($1 \leqq j \leqq n$)だけ赤玉を取り出し,その他の操作では白玉を取り出す確率は$[ヌ]$であり,$q_n(1)=n \times [ヌ]$となる.$q_n(k)$を$n$と$k$を用いて表すと,$q_n(k)=[ネ]$となる.
(3)$n$回目の操作を終えるまでに赤玉を取り出す回数が$k$回($0 \leqq k \leqq n$)であり,$n+1$回目の操作で赤玉を取り出す確率は,$(1)$と$(2)$で定めた$p_n(k)$と$q_n(k)$を用いて$q_n(k)p_n(k)$となる.このことから,$n+1$回目に赤玉を取り出す確率を計算すると$[ノ]$となる.
(4)$f(x)=e^{-x^2}$とする.$S_n$を$(1)$と$(2)$で定めた$p_n(k)$と$q_n(k)$を用いて
\[ S_n=\sum_{k=0}^n f(p_n(k))q_n(k) \]
とおくと,$\displaystyle \lim_{n \to \infty}S_n=[ハ]$となる.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
次の$[ ]$にあてはまる最も適当な数または式を解答欄に記入しなさい.

$A$を与えられた自然数として,
\[ a_1=3A,\quad a_{n+1}=\left\{ \begin{array}{ll}
a_n-2 & (n \text{が奇数のとき}) \\
a_n-1 & (n \text{が偶数のとき})
\end{array} \right. \]
によって定まる数列$\{a_n\}$を考える.

(1)$a_5,\ a_6$を$A$を用いて表すと,$a_5=[チ]$,$a_6=[ツ]$である.また一般に,$a_n$を$n$と$A$を用いて表すと,
\[ a_n=\left\{ \begin{array}{ll}
[テ] & (n \text{が奇数のとき}) \\
[ト] & (n \text{が偶数のとき})
\end{array} \right. \]
となる.
(2)$a_n>0$となる最大の自然数$n$を$N$とする.$N$を$A$を用いて表すと$N=[ナ]$であり,また$\displaystyle \sum_{n=1}^N a_n=[ニ]$である.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[ク]$に当てはまる数または式を記入せよ.

(1)ベクトル$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$が,$|\overrightarrow{a}|=5$,$|\overrightarrow{b}|=2$,$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{13}$,$|\overrightarrow{c}|=|\overrightarrow{a}-t \overrightarrow{b}|$の関係を満たすとき,$|\overrightarrow{c}|$の最小値は$[ア]$である.ただし,$t$は実数とする.
(2)整式$f(x)$を$x+5$で割ると余りが$-11$,$(x+2)^2$で割ると余りが$x+3$となる.このとき,$f(x)$を$(x+5)(x+2)^2$で割ると余りは$[イ]$である.
(3)全体集合$U=\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9\}$の部分集合$A,\ B$について,$\overline{A} \cap \overline{B}=\{1,\ 3\}$,$A \cup \overline{B}=\{1,\ 2,\ 3,\ 6,\ 7,\ 8\}$であるとき,集合$A=[ウ]$である.ただし,$\overline{A}$は$A$の補集合,$\overline{B}$は$B$の補集合とする.
(4)さいころを$4$回投げるとき,偶数の目がちょうど$2$回出る確率は$[エ]$である.
(5)ある細菌は$1$時間毎に分裂して個数が$2$倍になる.最初に$10$個あるとき,$100$万個を初めて超えるのは$[オ]$時間後である.ただし,$\log_{10}2=0.301$とし,整数で答えよ.
(6)複素数$z=a+i$について,$z^4$が実数となるとき,$z^4$のとりうる値は$[カ]$である.ただし,$a$は実数であり,$i$は虚数単位とする.
(7)関数$f(x)$が$f^\prime(x)=3x+2$と$\displaystyle \int_0^2 f(x) \, dx=4$をともに満たすとき,$f(x)=[キ]$である.
(8)$\displaystyle \sum_{k=1}^{25} (2k-1)^2$の値は$[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)次の問いに答えよ.

(i) $f(x,\ y)=2x^2+11xy+12y^2-5y-2$を因数分解すると,
\[ \left(x+[$1$]y+[$2$] \right) \left([$3$]x+[$4$]y-[$5$] \right) \]
である.
(ii) $f(x,\ y)=56$を満たす自然数$x,\ y$の値は,$x=[$6$]$,$y=[$7$]$である.

(2)$xy$平面上の$2$直線$y=x+4 \sin \theta+1$,$y=-x+4 \cos \theta-3$の交点を$\mathrm{P}$とおく.ただし,$\theta$は実数とする.

(i) $\displaystyle \theta=\frac{\pi}{12}$のとき,点$\mathrm{P}$の座標は$\displaystyle \left( \sqrt{[$8$]}-[$9$],\ \sqrt{[$10$]}-[$11$] \right)$である.
(ii) $\theta$が実数全体を動くとき,点$\mathrm{P}$の軌跡は
\[ x^2+y^2+[$12$]x+[$13$]y-[$14$]=0 \]
である.

(3)$2$次関数$f(x)$は,すべての実数$x$について
\[ \int_0^x f(t) \, dt=xf(x)-\frac{4}{3}x^3+ax^2 \]
を満たす.ただし,$a$は実数である.また,$f(0)=a^2-a-6$である.このとき,

(i) $f(x)=[$15$]x^2-[$16$]ax+\left( a+[$17$] \right) \left( a-[$18$] \right)$である.
(ii) 方程式$f(x)=0$が少なくとも$1$つの正の実数解をもつような$a$の値の範囲は
\[ [$19$][$20$]<a \leqq [$21$]+\sqrt{[$22$][$23$]} \]
である.

(4)$\{a_n\}$は,数字の$1$と$2$だけで作ることのできる自然数を小さい順に並べた数列である.
\[ \{a_n\} : \ 1,\ 2,\ 11,\ 12,\ 21,\ 22,\ 111,\ \cdots \]
このとき,

(i) $a_{10}=[$24$][$25$][$26$]$,$a_{15}=\kakkofour{$27$}{$28$}{$29$}{$30$}$である.
(ii) $\displaystyle \sum_{k=7}^{14} a_k=\kakkofour{$31$}{$32$}{$33$}{$34$}$である.
(iii) $\{a_n\}$のうち,$m$桁である項の総和は$\displaystyle \frac{{[$35$]}^{m-1} \left\{ \left([$36$][$37$] \right)^m-[$38$] \right\}}{[$39$]}$である.
自治医科大学 私立 自治医科大学 2015年 第12問
数列$\{a_n\}$は,$a_1=1$,$\displaystyle a_{n+1}=\frac{1}{3}a_n+4$を満たしている.$\displaystyle S_n=\sum_{k=1}^n a_k$とするとき,$\displaystyle \lim_{n \to \infty} \frac{S_n}{n}$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$c$を定数とし,数列$\{a_n\}$を
\[ a_n=\frac{c+\sum_{k=1}^n 2^k}{2^n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.

(1)数列$\{a_n\}$は漸化式
\[ a_{n+1}=[$1$]+\frac{a_n}{[$2$]} \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.
(2)$a_n$を$n$の式で表すと
\[ a_n=2-\frac{[$3$]-c}{2^n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
となる.ゆえに,$c=[$4$]$のとき数列$\{a_n\}$は公比$1$の等比数列になる.
(3)$c=1$とする.$a_n$が$1.99$を超えない最大の$n$は$[$5$]$である.
(4)$c=-38$とする.自然数$N$に対して,$\displaystyle \sum_{n=1}^N a_n$の値は$N=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$][$9$]}{[$10$]}$をとる.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.また$(1)$,$(3)$に答えなさい.

以下,数列$\{a_n\}$が「長さ有限」とは,ある番号から先のすべての$n$に対して$a_n=0$となることをいう.ただし,$a_n$はすべて実数とする.また,数列$\{a_n\}$を一つの文字で表すときは$A=\{a_n\}$あるいは$A=(a_1,\ a_2,\ \cdots)$のように書く.数列$A=\{a_n\}$が長さ有限のとき,$a_n \neq 0$となるような自然数$n$の最大値を数列$A$の「長さ」と呼ぶ.ただし,すべての$n$に対して$a_n=0$である数列の長さは$0$とする.
数列$A=\{a_n\}$,$B=\{b_n\}$,および実数$c$に対して
\[ A+B=\{a_n+b_n\},\quad cA=\{ca_n\} \]
により新しい数列$A+B$および$cA$を定義する.また,$A$,$B$がともに長さ有限のときに限って$A$と$B$との「内積」$A \cdot B$および「距離」$\overline{AB}$をそれぞれ
\[ A \cdot B=\sum_{n=1}^\infty a_nb_n,\quad \overline{AB}=\sqrt{\sum_{n=1}^\infty (a_n-b_n)^2} \]
により定める.$\displaystyle \left( \sum_{n=1}^\infty \text{は実際には有限個の数の和である.} \right)$
さて,
\[ A(0)=(0,\ 0,\ 0,\ \cdots),\quad A(1)=(1,\ 0,\ 0,\ \cdots) \]
であるとし,さらに$s=2,\ 3,\ \cdots$に対して長さ$s$の数列
\[ A(s)=(a(s)_1,\ a(s)_2,\ \cdots,\ a(s)_s,\ 0,\ 0,\ \cdots) \]
が定まっていて$a(s)_n>0 (n=1,\ 2,\ \cdots,\ s)$かつ
\[ \overline{A(s)A(t)}=1 \quad (s \neq t \text{かつ}s,\ t=0,\ 1,\ 2,\ \cdots) \]
が成り立っているとする.

(1)$s \geqq 1$ならば$A(s) \cdot A(s)=1$であり,また,$t>s \geqq 1$ならば$\displaystyle A(s) \cdot A(t)=\frac{1}{2}$であることを示しなさい.ただし,$A(s)=\{a_n\}$,$A(t)=\{b_n\}$とおきなさい.
(2)$A(2),\ A(3)$を求めると
$A(2)=\left( [あ],\ [い],\ 0,\ 0,\ \cdots \right)$,
$A(3)=\left( [う],\ [え],\ [お],\ 0,\ 0,\ \cdots \right)$
である.
(3)$t>s \geqq 2$ならば数列$A(t)$と数列$A(s)$の初めの$s-1$項はすべて一致することを示しなさい.ただし,数列$A(s)$の初めの$s$項を$a_1,\ a_2,\ \cdots,\ a_s$,数列$A(t)$の初めの$t$項を$b_1,\ b_2,\ \cdots,\ b_t$とおき,また,$s$と$t$以外のすべての$i \geqq 1$について数列$A(i)$の初めの$i$項を$c(i)_1,\ c(i)_2,\ \cdots,\ c(i)_i$とおきなさい.
(4)$t=1,\ 2,\ \cdots$に対して長さ$t$の数列$B(t)$を
\[ B(t)=\frac{1}{t+1} \left\{ A(1)+A(2)+\cdots +A(t) \right\}=\frac{1}{t+1} \sum_{i=1}^t A(i) \]
により定めると,$s=1,\ 2,\ \cdots,\ t$に対して$A(s) \cdot B(t)=[か]$である.
(5)$(3)$で示されたことから,$2$つの数列$\{x_n\}$,$\{y_n\}$が定まって,すべての$s \geqq 2$に対して$A(s)$は
\[ A(s)=(x_1,\ x_2,\ \cdots,\ x_{s-1},\ y_s,\ 0,\ 0,\ \cdots) \]
と表される.$\displaystyle \frac{y_s}{x_s}$を$s$の式で表すと$\displaystyle \frac{y_s}{x_s}=[き]$である.また,$x_s$を$s$の式で表すと$x_s=[く]$となる.
中央大学 私立 中央大学 2015年 第1問
正の整数$n$に対し

$3^n$を$5$で割ったときの余りを$a_n$,
$3^n$を$7$で割ったときの余りを$b_n$

とする.このとき,以下の設問に答えよ.

(1)$a_{10}$の値を求めよ.
(2)$b_{20}$の値を求めよ.
(3)$\displaystyle \sum_{k=1}^m (a_k+b_k) \geqq 300$となる最小の正の整数$m$を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
$m,\ n$を自然数とし,$m \geqq n$とする.$n$個の自然数の列で和が$m$となるようなものの場合の数を$f(m,\ n)$とする.例えば,$m=4$,$n=2$のときを考えてみると,和が$4$となる$2$つの自然数は$1,\ 3$と$2,\ 2$のみだから,和が$4$となる自然数の列は$1,\ 3$と$3,\ 1$と$2,\ 2$の$3$通りである.したがって,$f(4,\ 2)=3$である.このとき,以下の各値を求めよ.

(1)$f(7,\ 3)=[ア][イ]$
(2)$f(19,\ 4)=[ウ][エ][オ]$
(3)$\displaystyle \sum_{k=1}^{11} f(12,\ k)=\kakkofour{カ}{キ}{ク}{ケ}$
スポンサーリンク

「数列の和」とは・・・

 まだこのタグの説明は執筆されていません。