タグ「接線」の検索結果

84ページ目:全994問中831問~840問を表示)
長崎大学 国立 長崎大学 2011年 第1問
$f(x)=1-x^2$とし,曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$は$\displaystyle \frac{1}{2} \leqq a \leqq \frac{3}{2}$の範囲で動くものとする.原点と点$\mathrm{P}$の$2$点を通る直線を$\ell$,点$\mathrm{P}$における$y=f(x)$の接線を$m$とする.このとき,次の各問いに答えよ.

(1)$2$直線$\ell$と$m$の方程式を求めよ.
(2)$x \geqq 0$において,$y$軸と曲線$y=f(x)$および直線$\ell$で囲まれた図形の面積を$S_1(a)$とし,$y$軸と曲線$y=f(x)$および直線$m$で囲まれた図形の面積を$S_2(a)$とする.$S_1(a)$と$S_2(a)$を$a$を用いて表せ.
(3)$S_1(a)=2S_2(a)$を満たす$a$の値を求めよ.
(4)$S_1(a)-S_2(a)$の最大値と最小値を求めよ.また,そのときの$a$の値を求めよ.
長崎大学 国立 長崎大学 2011年 第5問
次の問いに答えよ.

(1)楕円$\displaystyle \frac{x^2}{3}+y^2=1$上の点$\displaystyle \left( 1,\ \frac{\sqrt{6}}{3} \right)$における接線の方程式を求めよ.
(2)$\theta$が$\displaystyle \tan \theta=\frac{1}{5}$および$\displaystyle 0<\theta<\frac{\pi}{4}$を満たすとき,$\tan 2\theta$と$\tan 4\theta$の値を求めよ.また,$\displaystyle 4\theta=\frac{\pi}{4}+\alpha$とおくとき,$\tan \alpha$の値を求めよ.
(3)$\displaystyle \lim_{n \to \infty} \left( \frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\cdots +\frac{n}{n^2+n^2} \right)$を,ある関数$f(x)$の$0 \leqq x \leqq 1$における定積分を用いて表し,この極限値を求めよ.
長崎大学 国立 長崎大学 2011年 第8問
曲線$y=\log x$の接線は常にこの曲線の上側にあることを利用して,次の問いに答えよ.以下,$k$は自然数とする.

(1)点$\mathrm{A}_k(k,\ 0)$を通り$x$軸に垂直な直線と曲線$y=\log x$との交点を${\mathrm{A}_k}^\prime$とし,${\mathrm{A}_k}^\prime$におけるこの曲線の接線を$\ell_k$とする.また,$k \geqq 2$のとき,$\displaystyle \mathrm{B}_k \left( k-\frac{1}{2},\ 0 \right)$,$\displaystyle \mathrm{C}_k \left( k+\frac{1}{2},\ 0 \right)$を通り$x$軸に垂直な直線と接線$\ell_k$との交点をそれぞれ${\mathrm{B}_k}^\prime$,${\mathrm{C}_k}^\prime$とする.四角形$\mathrm{B}_k \mathrm{C}_k {\mathrm{C}_k}^\prime {\mathrm{B}_k}^\prime$の面積を求めよ.
(2)次の2つの値の大小を比較せよ.

(i) $\log k$と$\displaystyle \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \log x \, dx \quad$(ただし,$k \geqq 2$)
(ii) $\displaystyle \frac{\log k+\log (k+1)}{2}$と$\displaystyle \int_k^{k+1} \log x \, dx \quad$(ただし,$k \geqq 1$)

(3)$\displaystyle a_n=\log (n!)-\frac{1}{2}\log n$とおくと,2以上の自然数$n$について,次の不等式が成り立つことを示せ.
\[ \int_{\frac{3}{2}}^n \log x \, dx<a_n<\int_1^n \log x \, dx \]
(4)2以上の自然数$n$について
\[ \left\{
\begin{array}{l}
U_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+\displaystyle\frac{3}{2} \left( 1-\log \displaystyle\frac{3}{2} \right) \\
V_n=\left( n+\displaystyle\frac{1}{2} \right) \log n-n+1
\end{array}
\right. \]
とおくとき,次の不等式を示せ.
\[ U_n<\log (n!)<V_n \]
浜松医科大学 国立 浜松医科大学 2011年 第1問
$2$次曲線$C$が媒介変数$\theta$を用いて,
\[ x=3+5 \cos \theta,\quad y=2+3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
と表されている.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を$x,\ y$を用いて表せ.また,$C$を座標平面上に図示せよ.
(2)曲線$C$上の点$\mathrm{P}(3+5 \cos \theta,\ 2+3 \sin \theta)$における$C$の接線$\ell$の方程式は,
\[ \frac{\cos \theta}{5}(x-3)+\frac{\sin \theta}{3}(y-2)=1 \]
となることを示せ.
(3)曲線$C$の焦点を$\mathrm{F}_1$,$\mathrm{F}_2$とする.$i=1,\ 2$に対し,$\mathrm{F}_i$を通り,接線$\ell$に垂直な直線$m_i$の方程式を求めよ.
(4)$i=1,\ 2$に対し,直線$m_i$と$\ell$との交点を$\mathrm{Q}_i$とする.点$\mathrm{O}^\prime(3,\ 2)$とするとき,線分$\mathrm{O}^\prime \mathrm{Q}_i$の長さを求めよ.
(5)$\mathrm{P}$が曲線$C$を一周するとき,線分$\mathrm{Q}_1 \mathrm{Q}_2$の長さの最大値,最小値,およびそのときの点$\mathrm{P}$をそれぞれ求めよ.
防衛大学校 国立 防衛大学校 2011年 第2問
放物線$C:y=x^2$と直線$L:y=x-1$がある.$L$上の点$\mathrm{A}(a,\ a-1)$から$C$に引いた$2$本の接線の接点を$\mathrm{P}$,$\mathrm{Q}$とし,$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とする.このとき,次の問に答えよ.

(1)$C$上の点$(t,\ t^2)$における接線の方程式を$y=mx+k$とするとき,$m,\ k$を$t$の式で表せ.
(2)$\alpha+\beta$および$\alpha\beta$を$a$の式で表せ.
(3)放物線$C$と$2$本の接線で囲まれた図形の面積を$S(a)$とするとき,$\displaystyle \frac{S(a)}{\beta-\alpha}$を$a$の式で表せ.
東京海洋大学 国立 東京海洋大学 2011年 第4問
$a$を定数とする.放物線$C:y=x^2+a$上の点$(t,\ t^2+a) (t>0)$における接線$\ell$が原点を通るとする.直線$\ell$に関して$y$軸と対称な直線を$m$とする.

(1)$a$を$t$を用いて表せ.
(2)$y$軸と直線$\ell$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とするとき,$\tan 2\theta$を$t$を用いて表せ.
(3)直線$m$の方程式を$t$を用いて表せ.
(4)放物線$C$と直線$m$が接するとき,$t$の値を求めよ.
(5)$(4)$のとき,放物線$C$を直線$\ell$に関して対称移動した曲線を$C_1$,直線$m$に関して対称移動した曲線を$C_2$とする.$C,\ C_1,\ C_2$で囲まれた図形の面積を求めよ.
大分大学 国立 大分大学 2011年 第1問
曲線$C:y=2x^2-2x$の原点における接線を$\ell$とする.直線$\ell$,直線$x=1$および曲線$C$で囲まれる領域を$D$とする.

(1)直線$\ell$の方程式を求めなさい.
(2)領域$D$と不等式$x+y \leqq 0$の表す領域$E$との共通部分の面積を求めなさい.
早稲田大学 私立 早稲田大学 2011年 第5問
$a$を$0$でない実数とする.$2$つの異なる曲線
\[ C_1: y=x^2-2x+5,\quad C_2: y=ax^2+(1-3a)x+\frac{13}{8}\]
は,ある共有点$\mathrm{P}$で共通な接線$\ell$をもつ.さらに,曲線$C_2$上の点$\mathrm{Q}$において$\ell$以外の接線を,$\ell$と点$\mathrm{R}$で直交するように引く.このとき$a$の値は$\displaystyle \frac{[ソ]}{[タ]}$であり,共通接線$\ell$の方程式は$[チ]x-[ツ]y+[テ]=0$である.また,曲線$C_2$は$\triangle \mathrm{PQR}$の面積を$1:[ト]$に分ける.ただし,$[タ]$から$[ト]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2011年 第1問
次の各問に答えよ.

(1)ある工場の製品が$50$個あり,その中に不良品が$2$個だけ含まれている.このとき次の問いに答えよ.

(2)この$50$個の製品の中から$5$個を同時に取り出したとき,少なくとも$1$個の不良品が含まれる確率は$[ア]$である.
(3)この$50$個の製品の中から同時にいくつかの製品を取り出したとき,$1$個以上の不良品が含まれる確率を$\displaystyle\frac{1}{2}$より大きくなるようにしたい.このときに,取り出す製品の個数は少なくとも$[イ]$個でなければならない.

(4)$x^2+y^2=25$で表される円$A$がある.点$(7,\ 1)$から円$A$に接線を引く.

(5)接線の方程式は,$y=-[ウ]x+[エ]$と$y=[オ]x-[カ]$で表される.$[ウ]$,$[エ]$,$[オ]$,$[カ]$を正の分数で表せ.
(6)上で求めた$2$本の接線に接し,さらに円$A$に接する円は$[キ]$個ある.これらの$[キ]$個の円の半径で,最大の半径は$[ク]$であり,最小の半径は$[ケ]$である.
立教大学 私立 立教大学 2011年 第1問
$f(x)=x^3+3x^2+4$とするとき,座標平面上の曲線$y=f(x)$について,次の問に答えよ.

(1)曲線$y=f(x)$の変曲点を求めよ.
(2)点$(t,\ f(t))$における曲線$y=f(x)$の接線の方程式を求めよ.
(3)曲線$y=f(x)$の接線で点$(1,\ a)$を通るものがちょうど$3$本あるような$a$の範囲を求めよ.
(4)曲線$y=f(x)$の接線で点$(1,\ a)$を通るものがちょうど$2$本あるような最小の$a$に対して,$2$本の接線と曲線$y=f(x)$で囲まれる部分の面積を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。