タグ「接線」の検索結果

82ページ目:全994問中811問~820問を表示)
群馬大学 国立 群馬大学 2011年 第2問
$xy$平面上の原点$\mathrm{O}$を中心とする半径$1$の円を$C_1$とする.

(1)点$\mathrm{A}(\sqrt{2},\ 0)$から$C_1$ に引いた接線の方程式を求めよ.
(2)$C_1$上を動く点を$\mathrm{P}$とし,点$\mathrm{P}$と点$\mathrm{B}(1,\ 0)$を結ぶ線分の中点の軌跡を$C_2$とするとき,$C_2$の方程式を求めよ.
群馬大学 国立 群馬大学 2011年 第3問
直線$\displaystyle \ell:y=\frac{1}{2}x-\frac{1}{4}$上の点Pから曲線$y=x^2$にひいた2接線の接点をQ,Rとし,$\theta=\angle \text{QPR}$とするとき,次の問いに答えよ.

(1)Pの$x$座標を$t$としPを$\ell$上動かす.$t \neq 0$のとき,$\tan \theta$を$t$の関数として表せ.
(2)$\theta$の最大値を求め,このときの点Pの座標を求めよ.
茨城大学 国立 茨城大学 2011年 第3問
$k=1,\ 2$に対して放物線$y=x^2-kx+1$を$C_k$で表す.点A$(1,\ 1)$での$C_1$の接線に,点Aで直交している直線を$\ell$とし,$\ell$と$C_2$の交点のうち$x$座標が正となる点をBとする.次の各問に答えよ.

(1)点Bの座標を求めよ.
(2)曲線$C_1,\ C_2$と線分ABで囲まれた図形の面積を求めよ.
和歌山大学 国立 和歌山大学 2011年 第4問
放物線$\displaystyle C:y=\frac{1}{2}x^2$上に2点P$(2p,\ 2p^2)$,Q$(2q,\ 2q^2)$がある.ただし,$p<q$である.点Pにおける接線と点Qにおける接線の交点をA$(\alpha,\ \beta)$とする.また,放物線$C$と2直線PA,QAで囲まれる部分の面積を$S$とする.このとき,次の問いに答えよ.

(1)$\alpha,\ \beta$を$p,\ q$を用いて表せ.
(2)$S$を$p,\ q$を用いて表せ.
(3)$S=9$かつ$\text{PA} \perp \text{QA}$のとき,$\alpha,\ \beta$の値を求めよ.
山形大学 国立 山形大学 2011年 第3問
正の定数$k$に対し,曲線$y=kx^2$を$C$とする.この曲線$C$を用いて,数列$\{a_n\}$を次のように定める.

\mon[(1)] $a_1>0$
\mon[(ii)] $n=1,\ 2,\ 3,\ \cdots$に対し,点P$_n (a_n,\ k(a_n)^2)$における曲線$C$の接線と$x$軸との交点の$x$座標を$a_{n+1}$とする.

このとき,次の問に答えよ.

(1)曲線$C$上の点P$_1$における接線の方程式を求めよ.
(2)$a_2$を$a_1$で表せ.
(3)$a_n$を$a_1$で表せ.
(4)曲線$C$,$x$軸,直線$x=a_n$,$x=a_{n+1}$で囲まれた図形の面積を$S_n$とする.$S_n$を$a_1$で表せ.
(5)$T_n=S_1+S_3+\cdots +S_{2n-1}$とする.$T_{n}$を$a_1$で表せ.
(6)$U_n=S_2+S_4+\cdots +S_{2n}$とする.$\displaystyle \frac{U_n}{T_n}$を求めよ.
山形大学 国立 山形大学 2011年 第4問
$xy$平面上に曲線$\displaystyle y=\frac{1}{x} \ (x>0)$がある.曲線$C$上の点P$\displaystyle \left( t,\ \frac{1}{t} \right)$における接線を$\ell$とし,原点Oから$\ell$に下ろした垂線をOHとするとき,次の問いに答えよ.

(1)直線$\ell$の方程式は$\displaystyle y=-\frac{1}{t^2}x+\frac{2}{t}$であることを示せ.
(2)点Hの座標は$\displaystyle \left( \frac{2t}{1+t^4},\ \frac{2t^3}{1+t^4} \right)$であることを示せ.
(3)直線$\ell$と$y$軸のなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とし,線分OHの長さを$d$とする.

\mon[(i)] $t^2,\ d^2$を$\theta$の式で表せ.
\mon[(ii)] $\displaystyle \lim_{\theta \to +0}\frac{d^2}{\theta}$を求めよ.
福井大学 国立 福井大学 2011年 第4問
関数$f(x)=(x^2-4x+1)e^{-x}$について,以下の問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)関数$g(x)$は$g^\prime(x)=f(x)$を満たし,かつ,曲線$y=g(x)$上の点$(3,\ g(3))$における接線は$x$軸と点$(2,\ 0)$で交わる.このとき$g(x)$を求めよ.
(3)2曲線$y=f(x)$と$y=g(x)$の2つの交点をP,Qとするとき,曲線$y=f(x)$と線分PQで囲まれた部分の面積を求めよ.
山形大学 国立 山形大学 2011年 第2問
媒介変数$t$を用いて$x=t^2,\ y=t^3$と表される曲線を$C$とする.ただし,$t$は実数全体を動くとする.また,実数$a \ (a \neq 0)$に対して,点$(a^2,\ a^3)$における$C$の接線を$\ell_a$とする.このとき,次の問に答えよ.

(1)$\ell_a$の方程式を求めよ.
(2)曲線$C$の$0 \leqq t \leqq 1$に対応する部分の長さを求めよ.ただし,曲線$x=f(t),\ y=g(t)$の$\alpha \leqq t \leqq \beta$に対応する部分の長さは$\displaystyle \int_{\alpha}^{\beta}\sqrt{\left( \frac{dx}{dt} \right)^2+\left( \frac{dy}{dt} \right)^2} \, dt$であたえられる.
(3)曲線$C$と直線$\ell_1$で囲まれた図形の面積を求めよ.
(4)曲線$C$と直線$\ell_1$で囲まれた図形を$y$軸の周りに1回転してできる回転体の体積を求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第4問
$e$を自然対数の底とする.関数$f(x)$を$f(x)=\log (e-x) \ (x<e)$とする.このとき,以下の設問に答えよ.

(1)曲線$y=f(x)$と$x$軸との交点を求めよ.
(2)曲線$y=f(x)$と$y$軸との交点をPとする.点Pにおける曲線$y=f(x)$の接線を$\ell$とする.直線$\ell$の方程式を求めよ.
(3)曲線$y=f(x)$と直線$\ell$のグラフを描け.
(4)曲線$y=f(x)$と直線$\ell$および$x$軸によって囲まれた図形を$y$軸のまわりに1回転してできる立体の体積を求めよ.
宮崎大学 国立 宮崎大学 2011年 第2問
座標平面上において,点A$(0,\ 1)$を中心とし原点Oを通る円$C_1$について,点B$(0,\ -1)$から引いた2本の接線の接点をP,Qとする.ただし,点Pの$x$座標は正とする.さらに,$y$軸に関して対称な放物線$C_2$が直線BPと直線BQにそれぞれ点Pと点Qで接するものとする.このとき,次の各問に答えよ.

(1)2点P,Qの座標を求めよ.
(2)放物線$C_2$を表す方程式を求めよ.
(3)点Aから放物線$C_2$上の各点までの距離は1以上であることを示せ.
(4)円$C_1$の原点Oを含む弧PQと放物線$C_2$で囲まれる部分の面積$S$を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。