タグ「接線」の検索結果

76ページ目:全994問中751問~760問を表示)
首都大学東京 公立 首都大学東京 2012年 第1問
楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>0,\ b>0)$上の点P$(x_0,\ y_0) (0 < x_0 < a,\ y_0>0)$における接線と$x$軸,$y$軸との交点をそれぞれA,Bとする.以下の問いに答えなさい.

(1)$\displaystyle \frac{\ x_0^2 \ }{a^2}=t$とおくとき,線分ABの長さ$\overline{AB}$を$a,\ b,\ t$を用いて表しなさい.
(2)$0<x_0<a$における$\overline{AB}$の最小値を求めなさい.また,そのときのPの座標を求めなさい.
首都大学東京 公立 首都大学東京 2012年 第1問
$e$は自然対数の底とする.$f(x)=x \log x$($x>0,\ \log x$は$x$の自然対数)とおく.$t>e$とするとき,以下の問いに答えなさい.

(1)曲線$y=f(x)$上の点$\mathrm{A}$における接線の傾きが$\log t$となるとき,$\mathrm{A}$の$x$座標$a(t)$を求めなさい.
(2)$x \geqq 1$の範囲において,曲線$y=f(x)$と$x$軸および直線$x=a(t)$で囲まれた部分の面積$S(t)$を求めなさい.
(3)$t \to \infty$のとき,$\displaystyle \frac{S(t)}{t^p \log t}$が$0$でない値に収束するような正の定数$p$の値を求めなさい.また,そのときの$\displaystyle \lim_{t \to \infty} \frac{S(t)}{t^p \log t}$を求めなさい.
高知工科大学 公立 高知工科大学 2012年 第1問
次の各問に答えよ.

(1)放物線$y=x^2-ax+3$の頂点が直線$y=3x+5$上にあるとき,定数$a$の値を求めよ.
(2)$\displaystyle \log_9\sqrt{2}+\frac{1}{2}\log_9 \frac{1}{3}-\frac{3}{2}\log_9 \sqrt[3]6$を簡単にせよ.
(3)曲線$y=\sqrt{x-1}$上の点$(2,\ 1)$における接線を$\ell$とする.この曲線と$x$軸および接線$\ell$で囲まれた部分の面積$S$を求めよ.
(4)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が$A^2-4A+3E=O$を満たすとき,$a+d$の値を求めよ.ただし,$O$は零行列,$E$は単位行列である.
京都府立大学 公立 京都府立大学 2012年 第2問
関数$f(x)$を$\displaystyle f(x)=x^2+\int_{-1}^1 f(t) \, dt$とおく.曲線$y=f(x)$を$C$とする.$C$上に2つの点P,Qがある.Pの$x$座標を$a$,Qの$x$座標を$b$とする.ただし,$a<b$とする.Pにおける$C$の接線と直交しPを通る直線を$\ell$,Qにおける$C$の接線と直交しQを通る直線を$m$,PとQを通る直線を$n$とする.$\ell$と$m$の交点をRとする.$\displaystyle \angle \text{PRQ}=\frac{\pi}{2}$とするとき,以下の問いに答えよ.

(1)等式$\displaystyle f(x)=x^2+\int_{-1}^1 f(t) \, dt$を満たす関数$f(x)$を求めよ.
(2)Rの$x$座標を$a$を用いて表せ.
(3)Rが$y$軸上にあるとき,$n$および$C$で囲まれた部分の面積を求めよ.
県立広島大学 公立 県立広島大学 2012年 第2問
直線$\ell:(1+\sqrt{3})x+(1-\sqrt{3})y=4$が,曲線$C:x^2+y^2=r^2 \ (r>0,\ x \geqq 0)$に接する.次の問いに答えよ.

(1)$r$の値を求めよ.
(2)点A$(a,\ 1)$が直線$\ell$上の点であるとき,$a$の値を求めよ.
(3)(2)で求めた点Aから曲線$C$に引いた$\ell$以外の接線$m$の方程式を求めよ.
(4)曲線$C$と2つの接線$\ell,\ m$で囲まれた図形の面積を求めよ.
県立広島大学 公立 県立広島大学 2012年 第4問
$m$を定数とし,2つの曲線
\[ y=f(x)=-x^2+mx-3,\quad y=g(x)=x^3-x \]
が,点A$(a,\ f(a))$を通り,Aで共通の接線$\ell$をもつ.次の問いに答えよ.

(1)$y=g(x)$のグラフをかけ.
(2)$a,\ m$の値と,接線$\ell$の方程式を求めよ.
(3)積分$\displaystyle \int_0^3 |f(x)| \, dx$の値を求めよ.
岡山県立大学 公立 岡山県立大学 2012年 第3問
$a$を実数とし,$f(x)=2x^3-3(a^2+a)x^2+6a^3x$とおく.次の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{A}(2a,\ f(2a))$における接線が,点$\mathrm{A}$とは異なる点$\mathrm{B}$において曲線$y=f(x)$と交わるとき,$a$が満たす条件を求めよ.また,そのときの点$\mathrm{B}$の$x$座標を求めよ.
(2)$0<a<1$のとき,$f(x)$の極大値と極小値の差を$g(a)$とおく.$g(a)$の最大値と,そのときの$a$の値を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第3問
関数$f(x)=x^2-x-2$によって,方程式$y=f(x)$と表される放物線$P$について,以下の問いに答えよ.

(1)放物線$P$上の点$(0,\ -2)$における,放物線$P$の接線の方程式を求めよ.
(2)放物線$P$を,原点に関して対称移動して得られる放物線の方程式を求めよ.
(3)(1)で求めた接線と,(2)で求めた放物線で囲まれた部分の面積を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第7問
原点$\mathrm{O}$を中心とする半径$1$の円において扇形$\mathrm{OAB}$を考える.ただし,点$\mathrm{A}$は$(1,\ 0)$であり,点$\mathrm{B}$は第$1$象限にあるとする.扇形$\mathrm{OAB}$の中心角は,$x$ラジアン$\displaystyle \left( 0<x<\frac{\pi}{2} \right)$であるとする.点$\mathrm{B}$から$\mathrm{OA}$におろした垂線を$\mathrm{BC}$,点$\mathrm{A}$における円の接線が,点$\mathrm{O}$と点$\mathrm{B}$を通る直線と交わる点を$\mathrm{D}$とする.以下の問いに答えよ.

(1)三角形$\mathrm{ODA}$,三角形$\mathrm{OAB}$,扇形$\mathrm{OAB}$の面積を,$x$を用いてそれぞれ表せ.
(2)不等式$\displaystyle \cos x<\frac{\sin x}{x}<1$が成り立つことを示せ.
(3)$\displaystyle \lim_{x \to +0}\frac{\sin x}{x}=1$を示せ.ただし,$x \to +0$は,$x$が正の値をとりながら限りなく$0$に近づくことを表す.
会津大学 公立 会津大学 2012年 第4問
曲線$C:y=\log x-1$の接線で原点を通るものを$\ell$とする.このとき,以下の空欄をうめよ.

(1)$C$と$x$軸の共有点の座標は$[ ]$である.
(2)$C$と$\ell$の接点の座標は$[ ]$である.
(3)$C$と$x$軸および$\ell$で囲まれた部分の面積を$S$とすると,$S=[ ]$である.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。