タグ「接線」の検索結果

75ページ目:全994問中741問~750問を表示)
東京理科大学 私立 東京理科大学 2012年 第3問
$\mathrm{O}$を原点とする座標平面において,円$x^2+y^2=4$の外部の点$\mathrm{A}$からこの円に$2$本の接線を引き,その接点を$\mathrm{P}$,$\mathrm{Q}$とする.線分$\mathrm{PQ}$の中点を$\mathrm{M}$とし,$\mathrm{M}$の座標を$(s,\ t)$とする.

(1)点$\mathrm{A}$の座標が$(a,\ b)$であるとき,$a,\ b$を用いて,点$\mathrm{M}$の座標$(s,\ t)$を表しなさい.
(2)点$\mathrm{A}$が直線$2x+3y=12$上を動くとき,点$\mathrm{M}$の軌跡を求めなさい.
九州産業大学 私立 九州産業大学 2012年 第3問
$a,\ b$を定数とする.$2$次関数$f(x)=x^2+ax+b$に対して,$1$次関数$g(x)$が$f(x)=(x-2)g(x)$を満たしており,$g(2)=3$である.放物線$y=f(x)$上の点$(2,\ f(2))$における接線を$\ell$とする.このとき

(1)定数$a,\ b$の値は$a=[アイ]$,$b=[ウエ]$である.
(2)直線$\ell$の方程式は$y=[オ]x-[カ]$である.
(3)直線$\ell$,直線$y=g(x)$および$x$軸で囲まれた図形の面積は$\displaystyle \frac{[キク]}{[ケ]}$である.

(4)放物線$y=f(x)$と直線$y=g(x)$で囲まれた図形の面積は$\displaystyle \frac{[コサ]}{[シ]}$である.
大同大学 私立 大同大学 2012年 第2問
次の$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.ただし,根号内の平方因数は根号外にくくり出し,分数は既約分数で表すこと.

(1)円$c_1:x^2+y^2-8x+6y-72=0$の中心を$\mathrm{A}(a,\ b)$,半径を$r$とするとき,$a=[ ]$,$b=-[ ]$,$r=\sqrt{[][]}$である.
円$c_2:x^2+y^2-2x+4y-35=0$の中心を$\mathrm{B}$とするとき,$\mathrm{AB}=\sqrt{[][]}$であり,円$c_1$が円$c_2$の接線から切りとる弦の長さの最大値は$[ ] \sqrt{[][]}$である.

(2)$\displaystyle 0<\beta<\alpha<\frac{\pi}{2}$,$\displaystyle \cos (\alpha+\beta)=\frac{1}{6}$,$\displaystyle \cos \alpha \cos \beta=\frac{3}{8}$のとき,

$\displaystyle \sin \alpha \sin \beta=\frac{[ ]}{[][]}$,$\displaystyle \cos (\alpha-\beta)=\frac{[ ]}{[][]}$,

$\displaystyle \cos 2\alpha=\frac{[ ]-[ ] \sqrt{[][][]}}{72}$である.
安田女子大学 私立 安田女子大学 2012年 第3問
直角三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}$,$\mathrm{BC}=1$,$\mathrm{CA}=2$である.図のように,$\triangle \mathrm{ABC}$の外接円上の点$\mathrm{B}$における接線上に$\mathrm{BD}=2 \sqrt{3}$となるように点$\mathrm{D}$をとる.このとき,次の問いに答えよ.
(図は省略)

(1)$\cos \angle \mathrm{CBD}$を求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)線分$\mathrm{CD}$の$\mathrm{C}$を越える延長と$\triangle \mathrm{ABC}$の外接円との交点のうち,点$\mathrm{C}$と異なる点を$\mathrm{E}$とするとき,$\triangle \mathrm{BDE}$の面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の問の$[$40$]$~$[$49$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

$y=|f(x)|$のグラフと$2$直線$\ell,\ m$に囲まれた部分の面積を考える.ただし$f(x)$は,等式
\[ f(x)=\frac{1}{4}x^2+\frac{15}{4} \int_{-2}^0 xf(t) \, dt-\frac{4}{3} \int_{-3}^3 \{f(t)+6\} \, dt \]
を満たし,直線$\ell$は$y=|f(x)|$の$x=8$における接線である.また直線$m$は,直線$\ell$と$y=|f(x)|$の交点と点$(1,\ 3)$の$2$点を通る,傾き負の直線である.

(1)$\displaystyle f(x)=\frac{[$40$]}{[$41$]}x^2-[$42$]x-[$43$]$である.

(2)直線$m$の方程式は$y=-[$44$]x+[$45$]$である.
(3)$y=|f(x)|$のグラフと$2$直線$\ell,\ m$に囲まれた部分の面積は$\displaystyle \frac{[$46$][$47$][$48$]}{[$49$]}$である.
安田女子大学 私立 安田女子大学 2012年 第3問
半径$1$の円$C$上にある点$\mathrm{P}$を通る直線$\ell$が,円$C$と点$\mathrm{P}$以外で交わる点を$\mathrm{Q}$とする.また,点$\mathrm{P}$で円$C$と接する直線を$m$とし,点$\mathrm{Q}$を通り直線$m$と垂直に交わる直線を$n$とする.さらに,直線$m$と直線$n$との交点を$\mathrm{R}$,円$C$と直線$n$とが点$\mathrm{Q}$以外で交わる点を$\mathrm{S}$とする.$\mathrm{PR}:\mathrm{RQ}=1:2$,$\displaystyle \mathrm{PQ}=\frac{4 \sqrt{5}}{5}$のとき,次の問いに答えよ.

(1)線分$\mathrm{RQ}$の長さを求めよ.
(2)$\triangle \mathrm{PSQ}$の面積を求めよ.
(3)直線$\ell$上に点$\mathrm{T}$をとる.そして,この点$\mathrm{T}$は,円$C$の外部に位置しているものとし,線分$\mathrm{TQ}$の長さは$\displaystyle \frac{\sqrt{5}}{4}$とする.また,点$\mathrm{T}$から円$C$に接線を引き,その接点を$\mathrm{U}$とする.このとき,線分$\mathrm{TU}$の長さを求めよ.
安田女子大学 私立 安田女子大学 2012年 第4問
曲線$C:y=2x^2 (x>0)$上の点$\mathrm{P}_1(x_1,\ 2{x_1}^2)$における接線が$x$軸と交わる点の$x$座標を$x_2$とする.曲線$C$上の点$\mathrm{P}_2(x_2,\ 2{x_2}^2)$における接線が$x$軸と交わる点の$x$座標を$x_3$とし,曲線$C$上に点$\mathrm{P}_3(x_3,\ 2{x_3}^2)$を定める.以下,同様に曲線$C$上の点$\mathrm{P}_3,\ \mathrm{P}_4,\ \cdots,\ \mathrm{P}_{n-1},\ \mathrm{P}_n$における接線と$x$軸が交わる点の$x$座標を$x_4,\ x_5,\ \cdots,\ x_n,\ x_{n+1}$とする.$x_1=1$とするとき,次の問いに答えよ.

(1)点$\mathrm{P}_1$および点$\mathrm{P}_2$の座標を求めよ.
(2)点$\mathrm{P}_n(x_n,\ 2{x_n}^2)$における接線と$x$軸との交点の$x$座標$x_{n+1}$を$x_n$で表せ.
(3)$x_n$を$n$の式で表せ.
青森公立大学 公立 青森公立大学 2012年 第3問
$x$の3次関数$f(x)=2x^3-3x^2$について,曲線$C_1:y=f(x)$と曲線$C_2:y=f(|x|)$を考える.次の問いに答えよ.

(1)曲線$C_1$のグラフを描け.
(2)$a$を実数とする.曲線$C_1$の接線のなかで点$(0,\ a)$を通る接線の本数を求めよ.
(3)曲線$C_2$のグラフの概形を描け.
(4)$b$は$\displaystyle b>\frac{1}{2}$を満たす実数とする.曲線$C_2$の接線のなかで点$(b,\ 4)$を通る接線の本数を求めよ.
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を入れよ.\\
\quad 座標平面内に円$S:x^2+y^2=4$と,円$S$上に異なる2点A$(a,\ b)$,B$(c,\ d)$があり,$ad-bc \neq 0$を満たしている.\\
\quad 点Aにおける円$S$の接線$\ell$の方程式は,$ax+by=[ア]$である.点Bにおける円$S$の接線を$m$とおくと,2直線$\ell$と$m$の交点Pの$x$座標は,$a,\ b,\ c,\ d$を用いて[イ]である.ここで,点Pの座標をP$(p,\ q)$とおくと,直線ABの方程式は,$p,\ q$を用いて[ウ]となる.\\
\quad 次に$0 \leqq \theta \leqq \pi$のとき,$t = \sin \theta + \cos \theta$とおくと,$t$の値のとりうる範囲は[エ]である.また,$t$を用いて$\sin \theta \cos \theta = [オ]$と表せる.このとき,関数$z=2\sin \theta \cos \theta + \sqrt{2}\sin \theta + \sqrt{2} \cos \theta + 6$を$t$を用いて表すと,$z = [カ]$となる.$z$の最大値は[キ]であり,最小値は[ク]となる.最小値をとる$\theta$の値は[ケ]である.\\
\quad 交点P$(p,\ q)$が,原点Oを中心とし$z$の最大値を半径とする円の周上を動くように,2点A,Bが円$S$の周上を動くとき,直線ABが通らない範囲の面積は[コ]である.
首都大学東京 公立 首都大学東京 2012年 第2問
実数$m$が$m>-1$を満たすとき,直線$\ell:y=mx$と放物線$C:y=x^2-x$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)点$\mathrm{P}$における$C$の接線と点$\mathrm{Q}$における$C$の接線の交点を$\mathrm{R}$とする.このとき,$\mathrm{R}$の座標を求めなさい.
(2)$\ell$と$C$で囲まれた部分の面積を$S_1$とし,$\triangle \mathrm{PQR}$の面積を$S_2$とするとき,$\displaystyle \frac{S_1}{S_2}$を求めなさい.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。