タグ「接線」の検索結果

70ページ目:全994問中691問~700問を表示)
自治医科大学 私立 自治医科大学 2012年 第24問
$2$つの曲線$C_1:f(x)=x^3+3x^2$,$C_2:g(x)=x^3+3x^2+c$($c>0$,$c$は実数定数)について考える.点$\mathrm{P}(p,\ f(p))$における$C_1$の接線と点$\mathrm{Q}(q,\ g(q))$における$C_2$の接線が一致するとき($p \neq q$),$c=-A(p+1)^3$と表記される.$A$の値を求めよ.
立教大学 私立 立教大学 2012年 第3問
座標平面上に点$\mathrm{P}(s,\ t)$がある.ただし,$t<0$である.点$\mathrm{P}$から放物線$\displaystyle C:y=\frac{1}{2}x^2$に引いた$2$本の異なる接線の接点を$\mathrm{A}$,$\mathrm{B}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta$とするとき,$\alpha+\beta$を$s$を用いて表せ.ただし,$\alpha < \beta$とする.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の式を$s$と$t$を用いて表せ.
(3)直線$\ell$と放物線$C$で囲まれる部分の面積を$S$とするとき,$S$を$s$と$t$を用いて表せ.
(4)点$\mathrm{P}$が点$(0,\ -3)$を中心とする半径$2$の円周上にあるとき,$S$の最大値,および最大値を与える点$\mathrm{P}$の座標をすべて求めよ.
北海学園大学 私立 北海学園大学 2012年 第4問
曲線$C:y=\sqrt{x}$上の点$\mathrm{P}(a,\ \sqrt{a})$における接線を$\ell$とする.曲線$C$,直線$x=a$,および$x$軸で囲まれた図形の面積が$18$であるとき,次の問いに答えよ.ただし,$a$は定数とし,$a>0$である.

(1)$a$の値を求めよ.
(2)接線$\ell$の方程式を求めよ.
(3)接線$\ell$,曲線$C$,および$x$軸で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
北海学園大学 私立 北海学園大学 2012年 第4問
$f(x)=(x-1)(x-\sqrt{3})$とする.点$\mathrm{A}(0,\ \sqrt{3})$における放物線$y=f(x)$の接線を$\ell$とするとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)定積分$\displaystyle \int_0^1 f(x) \, dx$を求めよ.
(3)接線$\ell$と$x$軸との交点を$\mathrm{B}$とし,$\mathrm{C}(1,\ 0)$とする.放物線$y=f(x)$,接線$\ell$,および線分$\mathrm{BC}$で囲まれた図形の面積を求めよ.
東北学院大学 私立 東北学院大学 2012年 第4問
円$\mathrm{O}:x^2+y^2=25$の上の$2$点$\mathrm{A}(5,\ 0)$,$\mathrm{B}(-3,\ 4)$をとる.次の問いに答えよ.

(1)線分$\mathrm{AB}$を$1:t (t>0)$に外分する点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標を$t$を用いて表せ.
(2)点$\mathrm{B}$における円$\mathrm{O}$の接線と点$\mathrm{C}$との距離が$12$であるとき,$t$の値を求めよ.
東北学院大学 私立 東北学院大学 2012年 第3問
関数$f(x)=(x-2)|x-3|$について以下の問いに答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)点$(2,\ 0)$における接線の方程式およびこの接線と$y=f(x)$の交点の座標を求めよ.
(3)$(2)$で求めた接線と$y=f(x)$のグラフで囲まれた部分の面積を求めよ.
南山大学 私立 南山大学 2012年 第2問
$2$次関数$f(x)=3x^2-6x+4$を考える.関数$g(x)$は,定数$a$に対して
\[ \int_a^x g(t) \, dt=f(x)-2a^2 \]
を満たす.

(1)曲線$y=f(x)$の接線で点$(0,\ -8)$を通るものが$2$つある.それぞれの方程式を求めよ.
(2)(1)で求めた$2$つの接線と曲線$y=f(x)$とで囲まれた部分の面積を求めよ.
(3)$g(x)$を求めよ.
(4)$a$の値を求めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$つの行列$A=\left( \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right)$,$B=\left( \begin{array}{rr}
1 & -3 \\
-2 & 5
\end{array} \right)$,$C=\left( \begin{array}{rr}
2 & -3 \\
-4 & 5
\end{array} \right)$がある.$A$の逆行列$A^{-1}$を求めると,$A^{-1}=[ア]$である.$B^2A^3CA$を求めると,$B^2A^3CA=[イ]$である.
(2)$k>1$とする.$2$次方程式$kx^2+(1-2k)x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-2(k+1)x+4k=0$の解の$1$つは$\beta$であり,もう$1$つの解を$\gamma$とする.このとき,$\beta$を求めると$\beta=[ウ]$である.さらに,$\beta-\alpha=\gamma-\beta$が成り立つとき,$k$の値を求めると$k=[エ]$である.
(3)$y=e^x+e^{-x}$とする.$y=3$のとき,$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}$の値は$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}=[オ]$である.また,$y=4$のとき,$x=[カ]$である.
(4)原点$\mathrm{O}$からの距離と点$\mathrm{A}(1,\ 1)$からの距離の比が$\sqrt{2}:1$である点$\mathrm{P}(x,\ y)$の軌跡は方程式$[キ]$で与えられる.この図形上の点$\mathrm{Q}(s,\ t)$における接線の傾きが$2$であるとき,$\mathrm{Q}$の座標は$(s,\ t)=[ク]$である.
(5)区別できない$9$個の球を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱のいずれかに入れる.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$に入れた球の個数をそれぞれ$a,\ b,\ c,\ d$とし,$X=1000a+100b+10c+d$とする.$X$のとりうる値を小さい順に並べたときに$31$番目にくる値を求めると$[ケ]$であり,$X$が$4$桁の数となる球の入れ方は$[コ]$通りある.
明治大学 私立 明治大学 2012年 第4問
曲線$y=\log x$上の点$\mathrm{P}(t,\ \log t)$における接線を$\ell$とする.このとき,以下の問に答えよ.

(1)直線$\ell$の方程式を求めよ.
以下では,曲線$y=ax^2-b$は点$\mathrm{P}$を通り,$\mathrm{P}$において$\ell$に接しているとする.ただし,$a$と$b$は正の数である.曲線$y=ax^2-b$と$x$軸で囲まれた図形の面積を$S$とする.
(2)$S$を$a,\ b$を用いて表せ.
(3)$a,\ b$を$t$で表し,$t$のとりうる値の範囲を求めよ.
(4)$S$の最大値を求めよ.なお,$S$がその最大値をとる$t$の値も求めること.
南山大学 私立 南山大学 2012年 第2問
$a,\ b$を正の定数とし,関数$f(x)=2x^3-3ax^2$と座標平面上の$2$つの曲線$C_1:y=f(x)$,$C_2:y=f(x)+b$を考える.

(1)$f(x)$の極大値と極小値を求めよ.
(2)区間$0 \leqq x \leqq 5$における$f(x)$の最小値を$a$で表せ.
(3)$a=1,\ b=5$として,同一平面上に$C_1$と$C_2$を図示せよ.
(4)$1$つの直線が$C_1$,$C_2$の両方の接線であるとき,その直線を$C_1$,$C_2$の共通接線という.$a=1$のとき,$C_1$と$C_2$に,傾き$12$の共通接線があるように$b$の値を定めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。