タグ「接線」の検索結果

7ページ目:全994問中61問~70問を表示)
早稲田大学 私立 早稲田大学 2016年 第2問
点$\mathrm{F}(0,\ 1)$を通り,直線$y=-1$に接する円の中心が描く軌跡を曲線$C$とする.このとき,曲線$C$を表す方程式は
\[ y=\frac{1}{[ウ]}x^2 \]
となる.また,曲線$C$上に$x$座標が正である点$\mathrm{P}$をとる.線分$\mathrm{FP}$の長さが$4$となるとき,曲線$C$の点$\mathrm{P}$における接線と曲線$C$および$y$軸とで囲まれる図形の面積は$[エ] \sqrt{[オ]}$となる.
早稲田大学 私立 早稲田大学 2016年 第1問
関数$f(x)=|x^2-1|-1$について,次の問に答えよ.

(1)関数$f(x)$の最小値,およびそのときの$x$の値を求めよ.また,曲線$y=f(x)$と$x$軸の共有点の座標を求めよ.
(2)不等式$\displaystyle |x^2-1|<\frac{1}{2}$を解け.
(3)曲線$y=f(x)$上の点$\displaystyle \left( \frac{1}{2},\ f \left( \frac{1}{2} \right) \right)$における接線$\ell$の方程式を求めよ.
(4)曲線$y=f(x)$と接線$\ell$で囲まれた部分の面積$S$を求めよ.
早稲田大学 私立 早稲田大学 2016年 第1問
次の問に答えよ.

(1)直線$-2x+4y+5=0$を$\ell$とする.点$\mathrm{A}(2,\ 4)$を通り,直線$\ell$に垂直な直線を$m$とし,同じく点$\mathrm{A}$を通り,$x$軸に平行な直線を$n$とする.直線$\ell$と直線$m$の交点を$\mathrm{B}$とし,直線$\ell$と直線$n$の交点を$\mathrm{C}$とするとき,次の各問いに答えよ.

(i) 点$\mathrm{B}$の座標は$([ア],\ [イ])$である.
(ii) 線分$\mathrm{AB}$の長さは$[ウ]$である.
(iii) 直線$\ell$上で線分$\mathrm{CB}$を$2:1$に外分する点を$\mathrm{D}$とし,直線$m$上で線分$\mathrm{AB}$を$3:2$に外分する点を$\mathrm{E}$とするとき,四角形$\mathrm{ACED}$の面積は$[エ]$である.

(2)座標平面上に定点$\mathrm{A}(-1,\ 0)$と$\mathrm{B}(1,\ 0)$が与えられているとし,動点$\mathrm{P}$,$\mathrm{Q}$は,それぞれ$\mathrm{A}$および$\mathrm{B}$とは一致しないところを動くものとするとき,次の各問いに答えよ.

(i) 点$\mathrm{P}(x,\ y)$が$\angle \mathrm{APB}={90}^\circ$を満たすように動くとき,点$\mathrm{P}$の$y$座標の最大値は$[オ]$である.
(ii) 点$\mathrm{Q}(x,\ y)$が$\angle \mathrm{AQB}={120}^\circ$を満たすように動くとき,点$\mathrm{Q}$の$y$座標の最大値は$[カ]$であり,また,点$\mathrm{Q}$が動いてできる曲線に$2$点$\mathrm{A}$,$\mathrm{B}$を付け加えた曲線を$C$とすると,曲線$C$が囲む部分の面積は$[キ]$である.

(3)$a$を正の実数とし,$\displaystyle a \neq \frac{1}{2}$であるとする.曲線$C:y=x^2-2x$上の$2$点$\mathrm{P}$,$\mathrm{Q}$を考える.点$\mathrm{P}$の座標を$\displaystyle \left( \frac{3}{2},\ -\frac{3}{4} \right)$とし,点$\mathrm{Q}$の座標を$(a+1,\ a^2-1)$とする.点$\mathrm{P}$を通り$\mathrm{P}$における$C$の接線に直交する直線を$\ell$とし,点$\mathrm{Q}$を通り$\mathrm{Q}$における$C$の接線に直交する直線を$m$とする.$2$直線$\ell$と$m$の交点が曲線$C$上にあるとき,次の各問いに答えよ.

(i) $a$の値は$[ク]$である.
(ii) $2$直線$\ell$,$m$と曲線$C$とで囲まれた領域で$x \geqq 0$を満たす部分の面積は$[ケ]$である.
早稲田大学 私立 早稲田大学 2016年 第2問
$2$つの複素数$w,\ z (z \neq 0)$の間に
\[ w=z-\frac{7}{4z} \]
という関係がある.ここで$w=x+yi$($x,\ y$は実数,$i$は虚数単位)と表すとき,以下の問に答えよ.

(1)複素数平面上で$z$が原点$\mathrm{O}$を中心として半径$\displaystyle \frac{7}{2}$の円周上を動くとする.このとき$w$が描く曲線$C$を座標平面上の$x$と$y$の方程式で表示せよ.
(2)$(1)$で得られた曲線$C$上の点$\mathrm{P}(s,\ t) (s>0,\ t>0)$における曲線$C$の接線が$x$軸と交わる点を$\mathrm{Q}$,$y$軸と交わる点を$\mathrm{R}$とする.このとき原点$\mathrm{O}$と$\mathrm{Q}$と$\mathrm{R}$とを頂点とする直角三角形$\triangle \mathrm{OQR}$を$y$軸のまわりに$1$回転してできる円錐の体積の最小値を求めよ.
早稲田大学 私立 早稲田大学 2016年 第3問
曲線$C:y=x^2$上の点を$\mathrm{P}$とする.ただし$\mathrm{P}$の$x$座標は正とする.点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{P}$を通り$\ell$に垂直な直線を$m$とする.直線$m$と曲線$C$が$\mathrm{P}$とは異なる交点をもつとき,その点を$\mathrm{Q}$とする.点$\mathrm{P}$が曲線$C$上を動くとき,以下の問に答えよ.

(1)点$\mathrm{Q}$における$C$の接線を$n$とし,$\ell$と$n$との交点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を$(p,\ q)$とするとき
\[ q=\frac{[キ]}{[ク]p^2}+\frac{[ケ]}{[コ]} \]
が成り立つ.
(2)曲線$C$と線分$\mathrm{PQ}$で囲まれる部分の面積の最小値は$\displaystyle \frac{[サ]}{[シ]}$であり,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標は
\[ \mathrm{P} \left( \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right),\quad \mathrm{Q} \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right) \]
である.
早稲田大学 私立 早稲田大学 2016年 第3問
曲線$C:y=x^2$上の点を$\mathrm{P}$とする.ただし$\mathrm{P}$の$x$座標は正とする.点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{P}$を通り$\ell$に垂直な直線を$m$とする.直線$m$と曲線$C$が$\mathrm{P}$とは異なる交点をもつとき,その点を$\mathrm{Q}$とする.点$\mathrm{P}$が曲線$C$上を動くとき,以下の問に答えよ.

(1)点$\mathrm{Q}$における$C$の接線を$n$とし,$\ell$と$n$との交点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を$(p,\ q)$とするとき
\[ q=\frac{[キ]}{[ク]p^2}+\frac{[ケ]}{[コ]} \]
が成り立つ.
(2)曲線$C$と線分$\mathrm{PQ}$で囲まれる部分の面積の最小値は$\displaystyle \frac{[サ]}{[シ]}$であり,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標は
\[ \mathrm{P} \left( \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right),\quad \mathrm{Q} \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right) \]
である.
星薬科大学 私立 星薬科大学 2016年 第5問
$x$の$3$次式$f(x)$が等式
\[ 4f(x)-xf^\prime(x)=3x^3-4x^2-6x+4 \]
を満たすとき,次の問に答えよ.

(1)このとき,$f(x)=[$37$]x^3-[$38$]x^2-[$39$]x+[$40$]$である.

(2)曲線$y=f(x)$を$C$とし,$C$上の点$(0,\ [$40$])$で$C$と接する接線を$\ell$とするとき,$\ell$の方程式は$y=-[$41$]x+[$42$]$であり,この$\ell$は,点$(0,\ [$40$])$以外の$C$上の点$\displaystyle \left( \frac{[$43$]}{[$44$]},\ -\frac{[$45$]}{[$46$]} \right)$において$C$と交わる.

(3)$C$と$\ell$とで囲まれた部分の面積は$\displaystyle \frac{[$47$]}{[$48$][$49$]}$である.
学習院大学 私立 学習院大学 2016年 第4問
平面上で,曲線$\displaystyle C:y=\frac{2}{x^2+1}$を考える.

(1)$C$は変曲点を$2$つもつ.その$2$点の座標を求めよ.
(2)$(1)$で求めた$2$点での$C$の接線を,それぞれ$L_1,\ L_2$とする.$2$直線$L_1,\ L_2$と$C$とで囲まれた部分の面積を求めよ.
学習院大学 私立 学習院大学 2016年 第3問
曲線$C:y=x^3-x$上に,原点とは異なる点$\mathrm{P}$がある.$\mathrm{P}$での$C$の接線を$\ell$とし,$\ell$と$C$の交点で$\mathrm{P}$以外のものを$\mathrm{Q}$とする.さらに,原点を通り$\ell$に平行な直線を$m$とする.

(1)$m$と$C$は相異なる$3$点で交わることを示せ.
(2)$m$と$C$の原点以外の交点を$\mathrm{R}$,$\mathrm{S}$とするとき,$\displaystyle \frac{\mathrm{PQ}}{\mathrm{RS}}$を求めよ.
東北学院大学 私立 東北学院大学 2016年 第4問
点$\mathrm{A}(8,\ 6)$を中心とし半径が$r$の円と円$C:x^2+y^2=4$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,次の問いに答えよ.ただし,点$\mathrm{P}$の$x$座標は点$\mathrm{Q}$の$x$座標より小さいとする.

(1)$r$の値の範囲を求めよ.
(2)直線$\mathrm{AP}$が円$C$の接線であるとき,$r$の値と点$\mathrm{P}$の座標を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。