タグ「接線」の検索結果

64ページ目:全994問中631問~640問を表示)
岩手大学 国立 岩手大学 2012年 第5問
3次関数$y=f(x)$が$x=1-\sqrt{3}$と$x=1+\sqrt{3}$において極値をとり,点$(3,\ f(3))$における$y=f(x)$のグラフの接線が直線$y=4x-27$であるとき,次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$x \geqq 0$のとき,$f(x) \geqq 3x^2-14x$が成立することを示せ.
大分大学 国立 大分大学 2012年 第3問
円周上の点Aにおける円の接線上に点Aと異なる点Pをとる.点Pを通る直線が点Pから近い順に2点B,Cで円と交わっている.$\angle \text{APB}$の二等分線と線分AB,ACとの交点をそれぞれD,Eとする.$\text{PA}:\text{PB}=r:1-r$とおき,$\text{BD}=s,\ \text{CE}=t$とおく.ただし,$0<r<1$とする.

(1)線分ADの長さを$r$と$s$で表しなさい.
(2)$\text{PB}:\text{PC}=2:3$となるとき,$r$の値を求めなさい.
(3)(2)のとき,線分AEの長さを$t$で表しなさい.
大分大学 国立 大分大学 2012年 第3問
曲線$C:y=x^2+px+q$と$y$軸との交点をQとし,$x$座標$t$が正である曲線$C$上の点をPとする.点Pにおける曲線$C$の接線を$\ell$とする.曲線$C$,接線$\ell$および$y$軸で囲まれた部分の面積を$S_1$とし,曲線$C$と直線PQで囲まれた部分の面積を$S_2$とする.

(1)$\ell$の方程式を求めなさい.
(2)$S_1$を$t$で表しなさい.
(3)$S_1:S_2$を求めなさい.
佐賀大学 国立 佐賀大学 2012年 第4問
$2$次関数$f(x),\ g(x)$は,それぞれ
\begin{eqnarray}
& & f(x)=\frac{3x^2}{16}\int_0^1 f(t) \, dt -\frac{3x}{7}\int_{-1}^0 f(t) \, dt+7, \nonumber \\
& & (x-1)g(x) = \int_0^x g(t) \, dt -\frac{2x^3}{3} + 2x^2-2x+1 \nonumber
\end{eqnarray}
を満たすとする.次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)$g(x)$を求めよ.
(3)放物線$y=f(x)$の点$(4,\ f(4))$における接線を$\ell$とする.直線$\ell$と放物線$y=g(x)$とで囲まれた部分の面積を求めよ.
佐賀大学 国立 佐賀大学 2012年 第6問
$a>0$のとき,放物線$C:y=x^2$上の点$\mathrm{P}(a,\ a^2)$における$C$の接線を$\ell_1$とし,$\mathrm{P}$を通り$\ell_1$と垂直な直線を$\ell_2$とする.次の問いに答えよ.

(1)直線$\ell_2$と放物線$C$との交点のうち,点$\mathrm{P}$と異なる方を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$a$の式で表せ.
(2)放物線$C$と直線$\ell_2$とで囲まれた部分の面積を$S$とする.$S$を$a$の式で表せ.
(3)(2)の$S$の最小値を求めよ.またそのときの$a$の値を求めよ.
富山大学 国立 富山大学 2012年 第3問
$3$次関数$f(x)=x^3+ax^2+b$について,曲線$y=f(x)$上の点$\mathrm{P}(t,\ f(t))$における曲線の接線を$\ell_t$とする.

(1)$\ell_t$の方程式を求めよ.
(2)$\ell_t$が原点を通るような$t$の値がただ$1$つに定まるための$a,\ b$の条件を求めよ.
(3)$a,\ b$が(2)の条件を満たすとき,点$(a,\ b)$が存在する領域を図示せよ.
九州工業大学 国立 九州工業大学 2012年 第1問
関数$f(x)=kx^3-3kx \ (k>0)$が表す座標平面上の曲線を$C:y=f(x)$とする.曲線$C$上の2点P$(p,\ f(p))$,Q$(ap,\ f(ap))$における接線をそれぞれ$\ell_1,\ \ell_2$とする.ただし,$p>0,\ a \neq 1$とする.以下の問いに答えよ.

(1)点Pにおける接線$\ell_1$の方程式を$k,\ p$を用いて表せ.
(2)点Qにおける接線$\ell_2$が点Pを通るとき,$a$の値を求めよ.
(3)ある$k$に対して2つの接線$\ell_1,\ \ell_2$が点Pにおいて垂直に交わっているとき,$k$を$p$を用いて表せ.また,そのような$k$が存在する$p$の値の範囲を求めよ.
(4)ある$k$に対して2つの接線$\ell_1,\ \ell_2$が点Pにおいて垂直に交わっているとき,接線$\ell_2$と曲線$C$によって囲まれた図形の面積$S$を$p$を用いて表せ.
新潟大学 国立 新潟大学 2012年 第1問
$xy$平面上に放物線$C:y = -x^2$がある.$\mathrm{P}(a,\ b)$を$C$上の点とする.放物線$D : y =x^2+px+q$は点$\mathrm{P}$を通り,点$\mathrm{P}$における$C$の接線と$D$の接線は一致している.次の問いに答えよ.

(1)$b,\ p,\ q$をそれぞれ$a$で表せ.
(2)$a = 1$のとき,放物線$C$と$D$および$y$軸で囲まれた図形の面積を求めよ.
(3)点$\mathrm{P}(a,\ b)$が放物線$C$上を動くとき,放物線$D$の頂点の軌跡を求めよ.
鳥取大学 国立 鳥取大学 2012年 第2問
関数$f(x)=x^3-6x^2+9x-1$について次の問いに答えよ.

(1)関数$f(x)$の極値を求め,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$のグラフ上の点$\mathrm{A}(2,\ 1)$,$\mathrm{B}(4,\ 3)$における接線の方程式をそれぞれ求めよ.
(3)$(2)$で求めた$2$本の接線と曲線$y=f(x) (2 \leqq x \leqq 4)$で囲まれた領域の面積を求めよ.
香川大学 国立 香川大学 2012年 第4問
定数$a>0$に対して,$f(x)=ax^3-6ax^2+9ax+1$とする.このとき,次の問に答えよ.

(1)関数$y=f(x)$の極値を調べて,そのグラフをかけ.
(2)点A,B,Cの座標をそれぞれ$(-1,\ f(-1))$,$(4,\ f(t))$,$(t,\ f(t))$とする.$-1<t<3$のとき,点Cにおける曲線$y=f(x)$の接線と,線分ABとが平行になるような$t$が1つだけ存在することを示せ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。