タグ「接線」の検索結果

55ページ目:全994問中541問~550問を表示)
福岡大学 私立 福岡大学 2013年 第7問
$f(x)=-x^2+4x$とする.$a>3$のとき,点$(1,\ a)$から曲線$y=f(x)$に引いた$2$本の接線の接点を$\mathrm{P}(p,\ f(p))$,$\mathrm{Q}(q,\ f(q)) (p<q)$とし,点$\mathrm{P}$を通る接線を$\ell_1$,点$\mathrm{Q}$を通る接線を$\ell_2$とする.このとき,次の問いに答えよ.

(1)接線$\ell_1$の傾きを$a$を用いて表せ.
(2)$2$本の接線$\ell_1$と$\ell_2$が直交するとき,曲線$y=f(x)$と接線$\ell_2$および直線$x=1$で囲まれた図形の面積を求めよ.
西南学院大学 私立 西南学院大学 2013年 第5問
関数$f(x)$を$f(x)=-x^3-3x^2+a$とし,$y=f(x)$で表されるグラフを$C$とする.$C$が極小となる点で$x$軸と接するとき,以下の問に答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求め,$f(x)$の極小値と極大値および$a$の値を求めよ.
(2)$C$と$x$軸の共有点のうち,$C$が極小とならない座標を求め,その点における$C$の接線$\ell$の方程式を求めよ.
(3)$y=3x^2-3$で表されるグラフを$D$とし,$D$と(2)で求めた$\ell$で囲まれる部分を$E$とする.$E$を$y$軸で$2$分割し,$x \geqq 0$の部分の面積と$x \leqq 0$の部分の面積を求めよ.
福岡大学 私立 福岡大学 2013年 第9問
放物線$y=x^2+2x+2$について,次の問いに答えよ.

(1)点$(0,\ -2)$からこの放物線に引いた$2$本の接線の傾きを求めよ.
(2)(1)で求めた$2$本の接線と放物線で囲まれた図形の面積を求めよ.
京都産業大学 私立 京都産業大学 2013年 第3問
以下の$[ ]$にあてはまる式または数値を入れよ.

$a$を正の実数とし,$xy$平面上に放物線$C:y=ax^2$とその上の点$\mathrm{P}(p,\ ap^2)$とが与えられている.ただし,$p>0$とする.原点を$\mathrm{O}$とする.
(1)放物線$C$と$x$軸および直線$x=p$で囲まれた部分の面積を$S_1(p)$とすると,$S_1(p)=[ア]$である.
(2)放物線$C$の$\mathrm{P}$における接線$\ell_1$の方程式は$y=[イ]$である.
(3)$\mathrm{P}$を通り$\ell_1$に垂直な直線$\ell_2$の方程式は$y=[ウ]$であり,$\ell_2$と$x$軸との交点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[エ]$である.
(4)点$\mathrm{R}(0,\ 1)$とする.$\mathrm{OQ}$,$\mathrm{OR}$を$2$辺とする長方形の面積を$S_2(p)$とし,$f(p)=S_1(p)-S_2(p) (p>0)$とおく.関数$f(p)$が極値をもつような$a$の値の範囲は$[オ]$である.
(5)$\displaystyle a=\frac{1}{10}$のとき,$f(p)$の極値を求めて,さらに$f(p)$のグラフを描け.
京都産業大学 私立 京都産業大学 2013年 第3問
$xy$平面上の曲線$C_1:y=x \sin x$と,傾き$m$の直線$C_2:y=mx$について,次の問いに答えよ.

(1)点$(a,\ a \sin a)$における$C_1$の接線の方程式を求めよ.
(2)$C_1$と$C_2$が$0<x<\pi$の範囲で接する$m$の値を求めよ.
(3)$(2)$のとき,$C_1$を$0 \leqq x \leqq \pi$に制限した曲線と$C_2$とで囲まれた部分の面積を求めよ.
(4)$(3)$で得られた部分を,$x$軸のまわりに$1$回転して得られる立体の体積を求めよ.
龍谷大学 私立 龍谷大学 2013年 第1問
次の問いに答えなさい.

(1)曲線$y=\log (1-x^2)$上のある点における接線の傾きが$-\sqrt{3}$のとき,その点の$x$座標を求めなさい.
(2)$\overrightarrow{a}=(3^x,\ 3^{-x})$,$\overrightarrow{b}=(1,\ 0)$とする.$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が$\displaystyle \frac{\pi}{3}$であるとき,$x$の値を求めなさい.
(3)方程式$\displaystyle \cos \left( x+\frac{\pi}{6} \right)+\sin x=0$を解きなさい.
学習院大学 私立 学習院大学 2013年 第3問
放物線$C:y=x^2$上の点$\mathrm{P}$に対し,$\mathrm{P}$における$C$の法線を$L(\mathrm{P})$とする($L(\mathrm{P})$は,$\mathrm{P}$を通り,$\mathrm{P}$での$C$の接線に直交する直線である).点$\mathrm{Q}(a,\ 1)$に対し,$L(\mathrm{P})$が$\mathrm{Q}$を通るような$C$上の点$\mathrm{P}$がちょうど$3$個あるための$a$の範囲を求めよ.
学習院大学 私立 学習院大学 2013年 第4問
$t$は正の実数とする.放物線$C:y=-x^2$上の点$\mathrm{P}(t,\ -t^2)$を頂点とする放物線$y=3x^2+bx+c$を$D$とする.また,点$\mathrm{P}(t,\ -t^2)$における$C$の接線を$L$とする.

(1)$b,\ c$を$t$で表せ.
(2)$L$と$D$の交点を求めよ.
(3)$C$と$D$の上側にあって$L$の下側にある部分の面積を求めよ.
学習院大学 私立 学習院大学 2013年 第4問
平面上に放物線$C_1:y=x^2$と円$C_2:(x-1)^2+(y-2)^2=5$がある.

(1)$C_1$上の点$\mathrm{P}$であって,$\mathrm{P}$における$C_1$の法線が点$(1,\ 2)$を通るようなものをすべて求めよ.ただし,$\mathrm{P}$における$C_1$の法線とは,$\mathrm{P}$を通り$\mathrm{P}$における$C_1$の接線に直交する直線のことである.
(2)$C_1$と$C_2$の共有点をすべて求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第2問
$xy$平面上に$2$曲線
\[ C_1:y=2x \sqrt{1-x^2},\quad C_2:y=\sqrt{1-x^2} \]
がある.$C_1$,$C_2$上に$2$点$\mathrm{P}_1(t,\ 2t \sqrt{1-t^2})$,$\mathrm{P}_2 (t,\ \sqrt{1-t^2}) (-1<t<1)$をとり,$\mathrm{P}_1$における$C_1$の接線$\ell_t$と,$\mathrm{P}_2$における$C_2$の接線$m_t$について考える.このとき,次の問いに答えよ.

(1)$C_1$および$C_2$の概形を同じ$xy$平面上に描け.ただし,曲線の凹凸と変曲点は調べなくてよい.また,$\mathrm{P}_1$と$\mathrm{P}_2$が一致するときの$t$の値を求めよ.
(2)$2$直線$\ell_t$と$m_t$が平行になるときの$t$がみたすべき条件を,$t$についての$2$次方程式で表し,その解$\alpha,\ \beta (\alpha<\beta)$を求めよ.
(3)$\ell_t$と$m_t$が交点をもつとき,その交点の$y$座標を$y_t$とする.

(i) $y_t$を$t$を用いて表せ.
(ii) $y_t>0$となる$t$の値の範囲を$(2)$で求めた$\alpha,\ \beta$を用いて表し,この範囲における$y_t$の最小値を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。