タグ「接線」の検索結果

52ページ目:全994問中511問~520問を表示)
宮崎大学 国立 宮崎大学 2013年 第5問
座標平面上に,半円$C:x^2+y^2=4$(ただし,$x>0$)と放物線$D:x^2-6y+3=0$がある.半円$C$上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$(ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$)における半円$C$の接線を$\ell$とするとき,次の各問に答えよ.

(1)半円$C$と放物線$D$との交点$\mathrm{Q}$の座標を求めよ.
(2)直線$\ell$が放物線$D$に点$\mathrm{R}$において接するとき,$\theta$の値と点$\mathrm{R}$の座標を求めよ.
(3)$(2)$のとき,半円$C$と放物線$D$および直線$\ell$によって囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2013年 第1問
座標平面上に,半円$C:x^2+y^2=4$(ただし,$x>0$)と放物線$D:x^2-6y+3=0$がある.半円$C$上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$(ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$)における半円$C$の接線を$\ell$とするとき,次の各問に答えよ.

(1)半円$C$と放物線$D$との交点$\mathrm{Q}$の座標を求めよ.
(2)直線$\ell$が放物線$D$に点$\mathrm{R}$において接するとき,$\theta$の値と点$\mathrm{R}$の座標を求めよ.
(3)$(2)$のとき,半円$C$と放物線$D$および直線$\ell$によって囲まれる部分の面積を求めよ.
長崎大学 国立 長崎大学 2013年 第1問
円$C_1:x^2-4x+y^2=0$と直線$\displaystyle \ell:y=\frac{\sqrt{3}}{3}x$がある.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,原点$\mathrm{O}$と異なるものを$\mathrm{A}$とする.点$\mathrm{A}$の座標を求めよ.さらに,原点$\mathrm{O}$を頂点とし,点$\mathrm{A}$を通る放物線$C_2$の方程式を$y=ax^2$とする.$a$の値を求めよ.
(2)直線$\ell$の傾きを$\tan \theta$と表す.そのときの$\theta$の値を求めよ.ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.
(3)円$C_1$と直線$\ell$で囲まれた図形のうち,直線$\ell$の上側にある部分の面積$S_1$を求めよ.
(4)円$C_1$と放物線$C_2$で囲まれた図形のうち,放物線$C_2$の上側にある部分の面積$S_2$を求めよ.
(5)放物線$C_2$の接線で,直線$\ell$とのなす角が$\displaystyle \frac{\pi}{4}$であるものを考える.そのすべてについて,接点の$x$座標を求めよ.
九州工業大学 国立 九州工業大学 2013年 第1問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲において,曲線$C_1:y=\sin 2x$と曲線$C_2:y=\cos x$の交点の$x$座標を$a,\ b,\ c \ (a<b<c)$とする.以下の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)交点$(b,\ \sin 2b)$における$2$つの曲線$C_1$と$C_2$のそれぞれの接線は垂直ではないことを示せ.
(3)$a \leqq x \leqq b$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_1$とし,$b \leqq x \leqq c$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_2$とするとき,$2$つの面積の比$S_1:S_2$を求めよ.
(4)曲線$C_1$の$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の部分と$x$軸で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2013年 第5問
曲線$C:y=e^x$上の点$\mathrm{P}(t,\ e^t)$における接線を$\ell$とする.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸の交点,接線$\ell$と$y$軸の交点の座標をそれぞれ求めよ.
(3)曲線$C$,接線$\ell$,$y$軸および直線$x=1$で囲まれた図形の面積$S(t)$を求めよ.
(4)$0 \leqq t \leqq 1$とする.このとき,$S(t)$の最大値およびそのときの$t$の値,$S(t)$の最小値およびそのときの$t$の値をそれぞれ求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第3問
座標平面上の曲線$K$を$y=x^3-x+1$とする.

(1)点$(t,\ t^3-t+1)$における$K$の接線の方程式を$t$を用いて表せ.
(2)点$(1,\ 5)$を通る直線$\ell$が$K$と接するとき,接点の座標を求めよ.
(3)直線$\ell$と$K$で囲まれた図形の面積を求めよ.ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
京都教育大学 国立 京都教育大学 2013年 第6問
関数$f(x)$が次のように与えられているとする.
\[ f(x)=\frac{1}{4}(1-x^2)^2-\theta x \]
ただし$\theta$は実数とする.以下の問に答えよ.

(1)曲線$y=f(x)$上の点$\displaystyle \left( 0,\ \frac{1}{4} \right)$における接線の方程式を求めよ.
(2)曲線$y=f(x)$と$(1)$で求めた接線によって囲まれる図形の面積を求めよ.
(3)関数$f(x)$が極大値をもつときの$\theta$の範囲を求めよ.
島根大学 国立 島根大学 2013年 第1問
$3$次関数$f(x)$は$x=1$と$x=3$で極値をとり,曲線$y=f(x)$は点$(0,\ 1)$と点$(1,\ 3)$を通るとする.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)曲線$y=f(x)$上の点$(t,\ f(t))$における接線の方程式を求めよ.
(3)曲線$y=f(x)$に接し,原点$(0,\ 0)$を通る直線の本数を求めよ.
宮崎大学 国立 宮崎大学 2013年 第3問
次の各問に答えよ.

(1)方程式$2 \cdot 8^x-3 \cdot 4^{x+1}+5 \cdot 2^{x+1}+24=0$を満たすような実数$x$をすべて求めよ.
(2)下図のような点$\mathrm{O}$を中心とする円において,弦$\mathrm{AB}$と点$\mathrm{A}$における接線$\ell$とのなす角$\angle \mathrm{BAT}$は,その角内にある弧$\mathrm{AB}$に対する円周角$\angle \mathrm{APB}$に等しいことを証明せよ.ただし,$\angle \mathrm{BAT}$は鋭角とする.
(図は省略)
和歌山大学 国立 和歌山大学 2013年 第4問
曲線$C:y=xe^{-x^2}$上の点$(t,\ te^{-t^2})$における接線を$\ell$とする.$t>1$の範囲で$\ell$と$x$軸の交点の$x$座標を最小にするような$t$を$t_0$とし,そのときの$\ell$を$\ell_0$とする.このとき,次の問いに答えよ.

(1)$t_0$を求めよ.
(2)$0<x<t_0$の範囲で$C$は上に凸であることを示せ.
(3)$C$と$\ell_0$と$y$軸で囲まれる部分の面積を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。