タグ「接線」の検索結果

49ページ目:全994問中481問~490問を表示)
秋田大学 国立 秋田大学 2013年 第2問
$k$を整数とし,$0 \leqq x \leqq \pi$において,
\[ f(x)=e^x \sin \left\{ (4k+1)x \right\},\quad g(x)=e^x \sin x \]
とする.このとき,次の問いに答えよ.

(1)$k=2$のとき,$2$つの曲線$y=f(x)$,$y=g(x)$の共有点の$x$座標を求めよ.
(2)$k=-1$のとき,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた図形の面積を求めよ.
(3)任意の整数$k$に対して,$2$つの曲線$y=f(x),\ y=g(x)$の共有点のうちに,その点におけるそれぞれの曲線の接線が一致するものがあることを示せ.
香川大学 国立 香川大学 2013年 第4問
曲線$\displaystyle C:y=\frac{\log x}{x}$について,次の問に答えよ.

(1)曲線$C$の概形をかけ.
(2)$C$の変曲点$\mathrm{P}$における,$C$の接線$\ell$の方程式を求めよ.
(3)$\ell$と$C$は,$\mathrm{P}$以外に共有点をもたないことを示せ.
佐賀大学 国立 佐賀大学 2013年 第4問
点$(0,\ a)$を中心とする半径$r$の円$C$と放物線$F:y=x^2$を考える.ただし,$a>0$とする.このとき,次の問に答えよ.

(1)円$C$と放物線$F$が点$(b,\ b^2)$で同じ接線を持つとする.ただし,$b>0$とする.このとき,$C$の中心と点$(b,\ b^2)$を結ぶ直線の傾きを$b$を用いて表せ.また,$r$を$b$を用いて表せ.
(2)(1)において$r=1$とする.このとき,$C$と$F$で囲まれた図形の面積$S$を求めよ.
(3)$C$と$F$の共有点が原点のみであるための$r$の条件を求めよ.
佐賀大学 国立 佐賀大学 2013年 第3問
定数$a,\ b$と自然対数の底$e$に対して,$f(x)=(ax+b)e^{-x}$とおく.曲線$y=f(x)$は点$(0,\ 2)$を通り,その点における接線の傾きは$2$であるとする.このとき,次の問に答えよ.

(1)$a,\ b$の値を求めよ.
(2)関数$f(x)$の極値を求めよ.
(3)$0 \leqq x \leqq 1$の範囲において,曲線$y=f(x)$と$x$軸で囲まれた図形の面積$S$を求めよ.
佐賀大学 国立 佐賀大学 2013年 第4問
$\alpha>1$とする.曲線$C:y=x^\alpha \ (x>0)$上の点$\mathrm{P}(p,\ p^\alpha)$における$C$の接線と$y$軸の交点を$\mathrm{Q}$とし,$x$軸上に点$\mathrm{R}$を$\mathrm{PR}=\mathrm{PQ}$をみたすようにとる.ただし,点$\mathrm{R}$の$x$座標は点$\mathrm{P}$の$x$座標より小さいものとする.このとき,次の問に答えよ.

(1)点$\mathrm{Q}$の$y$座標を求めよ.
(2)点$\mathrm{R}$の$x$座標を求めよ.
(3)$x$軸と直線$\mathrm{RP}$のなす鋭角を$\theta$とするとき,$\displaystyle \lim_{p \to \infty}\theta=\frac{\pi}{4}$をみたす$\alpha$の値を求めよ.
佐賀大学 国立 佐賀大学 2013年 第2問
$\alpha>1$とする.曲線$C:y=x^\alpha \ (x>0)$上の点$\mathrm{P}(p,\ p^\alpha)$における$C$の接線と$y$軸の交点を$\mathrm{Q}$とし,$x$軸上に点$\mathrm{R}$を$\mathrm{PR}=\mathrm{PQ}$をみたすようにとる.ただし,点$\mathrm{R}$の$x$座標は点$\mathrm{P}$の$x$座標より小さいものとする.このとき,次の問に答えよ.

(1)点$\mathrm{Q}$の$y$座標を求めよ.
(2)点$\mathrm{R}$の$x$座標を求めよ.
(3)$x$軸と直線$\mathrm{RP}$のなす鋭角を$\theta$とするとき,$\displaystyle \lim_{p \to \infty}\theta=\frac{\pi}{4}$をみたす$\alpha$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2013年 第2問
$a$を正の実数とする.双曲線$C:x^2-a^2y^2+a^2=0$上の$4$点$\mathrm{A}_1(0,\ 1)$,$\mathrm{A}_2(0,\ -1)$,$\mathrm{A}_3(a,\ \sqrt{2})$,$\mathrm{A}_4(-2a,\ -\sqrt{5})$が与えられている.$\mathrm{A}_1$における$C$の接線を$\ell_1$,$\mathrm{A}_3$における$C$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$\ell_1$と$\ell_3$の交点$\mathrm{S}$の座標を求めよ.
(2)直線$\mathrm{A}_1 \mathrm{A}_2$と直線$\mathrm{A}_3 \mathrm{A}_4$の交点$\mathrm{U}$の座標,および直線$\mathrm{A}_1 \mathrm{A}_4$と直線$\mathrm{A}_2 \mathrm{A}_3$の交点$\mathrm{V}$の座標を求めよ.
(3)$3$点$\mathrm{S}$,$\mathrm{U}$,$\mathrm{V}$が同一線上にあることを示せ.
旭川医科大学 国立 旭川医科大学 2013年 第4問
次の問いに答えよ.

(1)関数$y=x \log x-x \ (x>0)$の増減を調べ,そのグラフをかけ.
(2)$a$を正の実数とする.曲線$C:y=\log (x+1)$上の点$(t,\ \log (t+1))$における接線$\ell_t$が,曲線$C_a:y=a \log x$上の点$(s,\ a \log s)$における接線にもなっているとき,$t$と$s$の関係を$a$を含まない式で表せ.
(3)任意に与えられた$t>-1$に対して,直線$\ell_t$が曲線$C_a$の接線にもなっているような$a$が唯一つ存在すること,および$a>1$であることを示せ.
(4)直線$\ell_t$が曲線$C_a$の接線になっているとき,その接点の$x$座標を$s(t)$とかくことにする.$s(t)$を$t$の関数とみて増減を調べ,さらに$\displaystyle \lim_{t \to \infty}(s(t)-t)$を求めよ.
室蘭工業大学 国立 室蘭工業大学 2013年 第1問
$a,\ b$を定数とし,$a \neq 0$とする.関数$f(x)=ax^2-4x+b$は,条件
\[ x^2f^{\prime\prime}(x)-xf^\prime(x)+f(x)=x^2+8 \]
を満たすとする.

(1)$a,\ b$の値を求めよ.
(2)直線$\ell$が,放物線$y=x^2$の接線であり,かつ放物線$y=f(x)$の接線でもあるとき,$\ell$の方程式を求めよ.
(3)$2$つの放物線$y=x^2$と$y=f(x)$,および$(2)$で求めた接線$\ell$で囲まれた部分の面積を求めよ.
佐賀大学 国立 佐賀大学 2013年 第4問
関数$f(x)=xe^{-2x}$に関して次の問に答えよ.ただし,$e$は自然対数の底である.

(1)曲線$y=f(x)$の概形をかけ.必要ならば,$\displaystyle \lim_{x \to \infty}xe^{-2x}=0$を使ってよい.
(2)曲線$y=f(x)$の接線のうちで傾きが最小となるものを$\ell$とする.その接線$\ell$の方程式と接点$(a,\ f(a))$を求めよ.
(3)$x<a$において,接線$\ell$は曲線$y=f(x)$より常に上側にあることを証明せよ.ただし,$a$は(2)で求めたものとする.
(4)曲線$y=f(x)$,接線$\ell$,および$y$軸で囲まれた図形の面積$S$を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。