タグ「接線」の検索結果

47ページ目:全994問中461問~470問を表示)
岡山大学 国立 岡山大学 2013年 第4問
$C$を$xy$平面上の放物線$y=x^2$とする.不等式$y<x^2$で表される領域の点$\mathrm{P}$から$C$に引いた$2$つの接線に対して,それぞれの接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.また,$2$つの接線と$C$で囲まれた部分の面積を$S$とする.このとき,以下の問いに答えよ.ただし,等式
\[ \int_p^q (x-p)^2 \, dx=\frac{(q-p)^3}{3} \]
を用いてもよい.

(1)点$\mathrm{P}$の座標$(a,\ b)$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle S=\frac{(\beta-\alpha)^3}{12}$を示せ.
(3)点$\mathrm{P}$が曲線$y=x^3-1 \ (-1 \leqq x \leqq 1)$上を動くとき,$(\beta-\alpha)^2$の値の範囲を調べよ.さらに,$S$の最大値および最小値を与える点$\mathrm{P}$の座標を求めよ.
広島大学 国立 広島大学 2013年 第1問
放物線$y=2x^2-8$を$C$とする.$x$軸上の点$\mathrm{A}(a,\ 0) \ (a>0)$を通り$C$と接する直線が$2$本あるとき,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$2$つの接点$\mathrm{P},\ \mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta \ (\alpha<\beta)$とする.$\beta-\alpha=3$のとき,$a$の値と$2$本の接線の方程式を求めよ.
(3)$(2)$で求めた$2$本の接線と$C$で囲まれた部分の面積を求めよ.
信州大学 国立 信州大学 2013年 第6問
$a$を定数とする.放物線$y=a-x^2$の接線のうち,原点との距離が最小になるものの方程式を求めよ.またそのときの距離を求めよ.
信州大学 国立 信州大学 2013年 第7問
曲線$C:y=e^x$について以下の問いに答えよ.

(1)$C$上の点$\mathrm{P}(p,\ e^p)$における接線$\ell$および法線$n$の方程式を求めよ.
(2)$p>0$とする.$C$と$\ell$および$y$軸で囲まれる図形の面積を$S(p)$とする.また$C$と$n$および$y$軸で囲まれる図形の面積を$T(p)$とする.このとき極限$\displaystyle \lim_{p \to \infty}\frac{pT(p)}{S(p)}$を求めよ.
信州大学 国立 信州大学 2013年 第4問
放物線$y=(x-1)^2+q \ (q>0)$のグラフに,原点$\mathrm{O}$から引いた2本の接線が互いに垂直に交わっているとする.このとき,次の問に答えよ.

(1)$q$の値を求めよ.
(2)2本の接線と放物線とで囲まれる図形の面積を$S_1$とする.また,2本の接線と放物線との接点を点$\mathrm{A}$,$\mathrm{B}$とし,$\triangle \mathrm{OAB}$の面積を$S_2$とする.このとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
金沢大学 国立 金沢大学 2013年 第3問
$a>0$とする.$x \geqq 0$における関数$f(x)=e^{\sqrt{ax}}$と曲線$C:y=f(x)$について,次の問いに答えよ.

(1)$C$上の点$\displaystyle \mathrm{P} \left( \frac{1}{a},\ f \left( \frac{1}{a} \right) \right)$における接線$\ell$の方程式を求めよ.また,$\mathrm{P}$を通り$\ell$に直交する直線$m$の方程式を求めよ.
(2)定積分$\displaystyle \int_0^{\frac{1}{a}}f(x) \, dx$を$t=\sqrt{ax}$とおくことにより求めよ.
(3)曲線$C$,直線$y=1$および直線$m$で囲まれた図形の面積$S(a)$を求めよ.また,$a>0$における$S(a)$の最小値とそれを与える$a$の値を求めよ.
九州大学 国立 九州大学 2013年 第1問
$a>1$とし,$2$つの曲線
\[ \begin{array}{lll}
y=\sqrt{x} & & (x \geqq 0), \\
\displaystyle y=\frac{a^3}{x} & & (x>0)
\end{array} \]
を順に$C_1,\ C_2$とする.また,$C_1$と$C_2$の交点$\mathrm{P}$における$C_1$の接線を$\ell_1$とする.以下の問いに答えよ.

(1)曲線$C_1$と$y$軸および直線$\ell_1$で囲まれた部分の面積を$a$を用いて表せ.
(2)点$\mathrm{P}$における$C_2$の接線と直線$\ell_1$のなす角を$\theta(a)$とする$\displaystyle \left( 0<\theta(a)<\frac{\pi}{2} \right)$.このとき,$\displaystyle \lim_{a \to \infty}a \sin \theta(a)$を求めよ.
千葉大学 国立 千葉大学 2013年 第5問
$a,\ b$を実数とし,$a>0$とする.放物線$\displaystyle y=\frac{x^2}{4}$上に$2$点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{4} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{b^2}{4} \right)$をとる.点$\mathrm{A}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{A}$と$n_\mathrm{A}$,点$\mathrm{B}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{B}$と$n_\mathrm{B}$とおいたとき,$\ell_\mathrm{A}$と$\ell_\mathrm{B}$が直交しているものとする.$2$つの接線$\ell_\mathrm{A},\ \ell_\mathrm{B}$の交点を$\mathrm{P}$とし,$2$つの法線$n_\mathrm{A},\ n_\mathrm{B}$の交点を$\mathrm{Q}$とする.

(1)$b$を$a$を用いて表せ.
(2)$\mathrm{P},\ \mathrm{Q}$の座標を$a$を用いて表せ.
(3)長方形$\mathrm{AQBP}$の面積が最小となるような$a$の値と,そのときの面積を求めよ.
名古屋工業大学 国立 名古屋工業大学 2013年 第2問
$k$を正の定数とする.$2$つの曲線
\[ C_1:y=\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right),\quad C_2:y=k \tan x \ \left( 0 \leqq x<\frac{\pi}{2} \right) \]
について,次の問いに答えよ.

(1)$C_1$と$C_2$の交点におけるそれぞれの曲線の接線を$\ell_1,\ \ell_2$とする.直線$\ell_1,\ \ell_2$がなす角を$\displaystyle \theta \ \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とするとき,$\theta$の値を求めよ.
(2)$\displaystyle k=\frac{3}{2}$のとき,曲線$C_1,\ C_2$と$y$軸で囲まれる図形を$x$軸のまわりに回転させてできる立体の体積$V$を求めよ.
静岡大学 国立 静岡大学 2013年 第3問
関数$\displaystyle f(x)=\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$に対して,曲線$y=f(x)$を$C$とする.このとき,次の問いに答えよ.

(1)極限値$\displaystyle \lim_{x \to \infty}f(x)$と$\displaystyle \lim_{x \to -\infty}f(x)$,および,$f^{\prime\prime}(x)=0$を満たす$x$の値を求めよ.
(2)曲線$C$の概形をかけ.
(3)曲線$C$について,傾きが$2$の接線$\ell$の方程式を求めよ.
(4)曲線$C$,(3)で求めた接線$\ell$,直線$x=\log \sqrt{2}$によって囲まれた図形$D$の面積を求めよ.
(5)(4)の図形$D$を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。