タグ「接線」の検索結果

45ページ目:全994問中441問~450問を表示)
学習院大学 私立 学習院大学 2014年 第4問
放物線$C:y=x^2$上の点$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ \frac{3}{4} \right)$に対して,$\mathrm{P}$における$C$の接線を$L$とする.

(1)$C$と$L$と$y$軸とで囲まれた部分の面積を求めよ.
(2)点$\mathrm{P}$で$L$に接し,同時に$x$軸の正の部分に接する円を$K$とする.$K$の中心の座標を求めよ.
大阪市立大学 公立 大阪市立大学 2014年 第2問
$a>0$,$b>0$とし,座標平面上の楕円$\displaystyle K:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上の$2$点
\[ \mathrm{A}(a \cos \theta,\ b \sin \theta),\qquad \mathrm{B} \left( a \cos \left( \theta+\frac{\pi}{2} \right),\ b \sin \left( \theta+\frac{\pi}{2} \right) \right) \]
のそれぞれにおける$K$の接線を$\ell$,$m$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$とする.$2$直線$\ell$と$m$の交点を$\mathrm{C}(c,\ d)$とし,さらに$2$点$\displaystyle \mathrm{D} \left( a \cos \left( \theta+\frac{\pi}{2} \right),\ 0 \right)$,$\mathrm{E}(c,\ 0)$をとる.台形$\mathrm{CBDE}$の面積を$S$とする.次の問いに答えよ.

(1)$c$および$d$を$a,\ b,\ \theta$を用いて表せ.
(2)$S$を$a,\ b,\ \theta$を用いて表せ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$の範囲を動くときの$S$の最大値,および,$S$が最大値をとるときの$m$の傾きを$a,\ b$を用いて表せ.
首都大学東京 公立 首都大学東京 2014年 第3問
$f(x)=x(x-2)-6 |x|$とするとき,以下の問いに答えなさい.

(1)$f(x)$の最小値を求めなさい.
(2)曲線$y=f(x)$上の点$\mathrm{A}(t,\ f(t)) (t>0)$を通る接線が曲線$y=f(x)$の$x<0$の部分と点$\mathrm{B}$で接しているとき,点$\mathrm{A}$,$\mathrm{B}$の座標と接線の方程式を求めなさい.
(3)$(2)$において曲線$y=f(x)$と線分$\mathrm{AB}$で囲まれる部分の面積を求めなさい.
公立はこだて未来大学 公立 公立はこだて未来大学 2014年 第1問
次式で与えられる$2$つの放物線$C_1,\ C_2$について,以下の問いに答えよ.
\[ C_1:y=x^2,\quad C_2:y=ax^2+1 \]
ただし,$a$は$0$でない定数とする.

(1)$C_1$と$C_2$が$2$個の共有点をもつように,定数$a$のとりうる値の範囲を求めよ.さらに,そのときの共有点の座標をすべて求めよ.
(2)$a$の値が$(1)$で求めた範囲にあるとき,第$1$象限における$C_1$と$C_2$の共有点を$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$と$C_2$の接線をそれぞれ$\ell_1$,$\ell_2$とする.また,$\ell_1$と$\ell_2$および$y$軸で囲まれた部分の面積を$S_1$,$C_1$と$C_2$で囲まれた部分の面積を$S_2$とする.このとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2014年 第4問
$f(x)=|x^2-3x+2|$とする.曲線$y=f(x)$を$C$とし,曲線$C$上の点$\mathrm{A}(a,\ f(a))$における接線を$\ell$とする.ただし,$1<a<2$とする.以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$の共有点のうち,接点$\mathrm{A}$とは異なる$2$つの点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$で表せ.
(3)曲線$C$と接線$\ell$で囲まれた部分の面積を$S$とするとき,$S$のとりうる値の範囲を求めよ.
岩手県立大学 公立 岩手県立大学 2014年 第1問
以下の問いに答えなさい.

$y=2(x-1)(x^2-2x-2)$で与えられる平面上の曲線$C$を考える.

(1)曲線$C$と$x$軸との交点の座標をすべて答えなさい.
(2)$x=a$で曲線$C$と接する接線の方程式を$a$を用いて答えなさい.
(3)$x=a$で曲線$C$と接する接線と$y$軸との交点の$y$座標を$b$とする.$\displaystyle -\frac{1}{4} \leqq a \leqq 3$における$b$の最小値と最大値を答えなさい.また,$b$の値が最小,最大となるときの$a$の値をそれぞれ答えなさい.
兵庫県立大学 公立 兵庫県立大学 2014年 第2問
関数$f(x)=ax^2+bx+c (a>0)$で定まる放物線$C:y=f(x)$と,$C$に$x=\alpha$で接する接線$\ell$,および,直線$x=\beta (\alpha<\beta)$とで囲まれた領域の面積を$S$とする.このとき,$S$を$\alpha$と$\beta$を用いて表しなさい.
愛知県立大学 公立 愛知県立大学 2014年 第4問
座標平面上に点$\mathrm{P}(x,\ y)$,点$\mathrm{F}(1,\ 0)$,点$\mathrm{F}^\prime(-1,\ 0)$,および直線$\ell:x=2$がある.点$\mathrm{P}$から直線$\ell$に下ろした垂線を$\mathrm{PH}$とする.また,点$\mathrm{P}$と点$\mathrm{F}$,$\mathrm{F}^\prime$,$\mathrm{H}$との距離を,それぞれ$\mathrm{PF}$,$\mathrm{PF}^\prime$,$\mathrm{PH}$とし,原点$\mathrm{O}$と点$\mathrm{P}$の距離を$r$とする.比$\displaystyle \frac{\mathrm{PF}}{\mathrm{PH}}$の値が$\displaystyle \frac{1}{\sqrt{2}}$となる点$\mathrm{P}$の軌跡を$C$とするとき,以下の問いに答えよ.

(1)$C$の方程式を求めよ.
(2)$\mathrm{PF}+\mathrm{PF}^\prime$は定数となる.その値を求めよ.
(3)$\mathrm{PF} \cdot \mathrm{PF}^\prime$を$r$を用いて表せ.
(4)点$\mathrm{P}$は第$1$象限にあり,$\displaystyle \angle \mathrm{F}^\prime \mathrm{PF}=\frac{\pi}{3}$とする.このとき,$r$の値と点$\mathrm{P}$の座標を求めよ.また,$C$上の求めた点$\mathrm{P}$における接線の方程式を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2014年 第4問
$xy$平面において,原点$\mathrm{O}$を中心とする半径$4$の円$C$の内側を半径$1$の円$C^\prime$が内接しながら滑ることなく転がるとき,円$C^\prime$上の点$\mathrm{P}$が描く曲線を$X$とする.ただし,点$\mathrm{P}$のはじめの位置は点$\mathrm{P}_0(4,\ 0)$とする.円$C^\prime$の中心$\mathrm{O}^\prime$が原点$\mathrm{O}$の周りを$\theta$だけ回転したときの点$\mathrm{P}$の座標を$(x,\ y)$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OO}^\prime}$の成分を$\theta$を用いて表せ.
(2)$x,\ y$を$\theta$を用いて表せ.
(3)点$\mathrm{P}$における曲線$X$の接線と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とするとき,線分$\mathrm{QR}$の長さは一定であることを示せ.ただし,点$\mathrm{P}$は座標軸上の点ではないものとする.
岐阜薬科大学 公立 岐阜薬科大学 2014年 第6問
曲線$y=\log (kx)$を$C$とする.曲線$C$,原点$\mathrm{O}$を通る曲線$C$の接線$\ell$,$x$軸とで囲まれた図形を$D$とするとき,次の問いに答えよ.ただし,$k$は正の定数とする.

(1)接線$\ell$の方程式を求めよ.
(2)$D$を$x$軸のまわりに$1$回転してできる立体の体積$V_x$を求めよ.
(3)$D$を$y$軸のまわりに$1$回転してできる立体の体積$V_y$を求めよ.
(4)$V_x=V_y$となる$k$の値を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。