タグ「接線」の検索結果

44ページ目:全994問中431問~440問を表示)
松山大学 私立 松山大学 2014年 第4問
次の空所$[ア]$~$[ト]$を埋めよ.

関数$\displaystyle f(x)=x^3+\frac{1}{2}ax^2-6x-\frac{1}{2}b$がある.ただし,
\[ a=\int_0^1 f(t) \, dt \cdots\cdots ① \qquad b=\int_{-1}^1 f(t) \, dt \cdots\cdots ② \]
とする.

(1)関数$f(x)$の不定積分は
\[ \int f(t) \, dt=\frac{1}{[ア]}t^4+\frac{1}{[イ]}at^3-[ウ]t^2-\frac{1}{[エ]}bt+C \quad \text{($C$は積分定数)} \]
であり,式$①$,$②$より$a=-[オ]$,$\displaystyle b=-\frac{[カ]}{[キ]}$である.
(2)$y=f(x)$が表す曲線$A$において,$\displaystyle x=\frac{3}{2}$のときの接線$B$を$y=g(x)$とおくと,関数$f(x)$の導関数は
\[ f^\prime(x)=[ク]x^2-[ケ]x-[コ] \]
であるので,
\[ g(x)=-\frac{[サシ]}{[ス]}x-\frac{[セソ]}{[タ]} \]
である.
接点以外の,曲線$A$と接線$B$の交点は,$\displaystyle \left( -\frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$である.
東京医科大学 私立 東京医科大学 2014年 第1問
次の$[ ]$を埋めよ.

(1)座標平面上の点$\displaystyle \mathrm{A} \left( 1,\ \frac{1}{4} \right)$を通る$2$曲線$\displaystyle C_1:y=\frac{1}{4}x^2$,$C_2:ax^2+by^2=1$($a,\ b$は正の定数)を考える.点$\mathrm{A}$における$2$曲線$C_1,\ C_2$の接線が直交するとき
\[ a=\frac{[ア]}{[イ]},\quad b=\frac{[ウエ]}{[オ]} \]
である.
(2)座標平面の点$\mathrm{P}(x,\ y)$が円$\displaystyle C:(x-1)^2+(y-1)^2=\frac{1}{16}$上を動くとき,式
\[ \frac{x}{y}+\frac{y}{x} \]
がとる最大値を$M$とすれば
\[ M=\frac{[カキ]}{[クケ]} \]
である.
東京医科大学 私立 東京医科大学 2014年 第3問
座標平面の曲線$C:y=\sqrt{x^2+9}$上の点$\mathrm{A}(4,\ 5)$における接線を$L$とする.

(1)接線$L$の方程式は
\[ y=\frac{[ア]}{[イ]}x+\frac{[ウ]}{[エ]} \]
である.
(2)曲線$C$,接線$L$および$y$軸とで囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積を$V$とすれば
\[ V=\frac{[オカ]}{[キ]} \pi \]
である.
東京都市大学 私立 東京都市大学 2014年 第2問
次の問に答えよ.

(1)不等式$x^2+y^2-6x-4y \leqq -9$を満たす点$(x,\ y)$全体の集合を$xy$平面上に図示せよ.
(2)関数$y=e^x-e^{-x}$のグラフに接する,傾きが$4$である接線の方程式を求めよ.
(3)定積分$\displaystyle \int_{e^{-1}}^e |\log x| \, dx$の値を求めよ.ただし,$\log$は自然対数である.
東京都市大学 私立 東京都市大学 2014年 第3問
次の問に答えよ.

(1)点$(-p,\ 0)$(ただし,$p>0$)から放物線$y^2=4x$に引いた,傾きが負の接線の方程式を求めよ.
(2)$(1)$で求めた接線と,$x$軸および放物線$y^2=4x$で囲まれる図形の面積が$\displaystyle \frac{16}{3}$となるときの$p$の値を求めよ.
東京都市大学 私立 東京都市大学 2014年 第1問
次の問に答えよ.

(1)ベクトル$\overrightarrow{a}=(1,\ 7)$とのなす角が${60}^\circ$である長さ$\sqrt{2}$のベクトルをすべて求めよ.
(2)不等式$|x-2|>2x-1$を解け.
(3)$y=x^2$のグラフの$x=k$における接線が$y=-x^2+4x-3$のグラフに接している.このとき,$k$の値を求めよ.
東京都市大学 私立 東京都市大学 2014年 第4問
$xy$平面上に関数$y=e^x$のグラフ$C_1$と関数$y=a \sqrt{x} (a>0)$のグラフ$C_2$があり,ただ$1$つの共有点$\mathrm{A}$をもち,点$\mathrm{A}$で同一の接線をもつ.このとき,次の問に答えよ.

(1)点$\mathrm{A}$の$x$座標と$a$の値を求めよ.
(2)$C_1$と$C_2$と$y$軸で囲まれる部分の面積を求めよ.
(3)$(2)$の図形を$x$軸で$1$回転させた回転体の体積を求めよ.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第4問
$y=\sqrt{x}$で表される曲線$C$と,$C$上の点$\mathrm{A}(4,\ 2)$が与えられている.このとき以下の問いに答えなさい.

(1)点$\mathrm{A}$における曲線$C$の接線および法線の方程式を求めなさい.
(2)$(1)$で求めた法線と曲線$C$および$x$軸とで囲まれた部分の面積を求めなさい.
北海道医療大学 私立 北海道医療大学 2014年 第2問
以下の問に答えよ.

(1)座標平面上の点と方程式に関する以下の問に答えよ.

\mon[$①$] 点$(2,\ 3)$を通る傾き$m$の直線の方程式を求めよ.
\mon[$②$] 点$(2,\ 3)$から円$x^2+y^2=1$に引いた接線の傾きを求めよ.
\mon[$③$] 条件$x^2+y^2=1,\ y-x \geqq -1$を同時に満たす点$(x,\ y)$について$\displaystyle \frac{y-3}{x-2}=k$とおくとき,$k$の最大値を求めよ.

(2)三角関数に関する以下の問に答えよ.ただし$0 \leqq \theta<2\pi$とする.

\mon[$①$] $\sin \theta-\cos \theta$の最大値と最小値を求めよ.
\mon[$②$] $\sin \theta-\cos \theta \geqq -1$を満たす$\theta$の範囲を求めよ.
\mon[$③$] $\sin \theta-\cos \theta \geqq -1$を満たす$\theta$に対する$\displaystyle \frac{\sin \theta-3}{\cos \theta-2}$の最大値と最小値を求めよ.
西南学院大学 私立 西南学院大学 2014年 第5問
$a>0$とする.関数$f(x)$を
\[ f(x)=(x-1)(x^2-2x-3ax+2a+2a^2) \]
とし,$y=f(x)$で表される曲線を$C$とする.$C$は$x$軸と$3$つの異なる交点を持ち,その中の$1$つを点$\mathrm{P}(1,\ 0)$とし,残り$2$つを$x$座標の小さい方から点$\mathrm{A}$と点$\mathrm{B}$とする.点$\mathrm{P}$が点$\mathrm{A}$と点$\mathrm{B}$の間にあるとき,以下の問に答えよ.

(1)点$\mathrm{P}$における$C$の接線$\ell$の方程式を$a$を用いて表せ.
(2)$a$の範囲を求めよ.また,点$\mathrm{A}$と点$\mathrm{B}$の座標を$a$を用いて表せ.
(3)点$\mathrm{A}$と点$\mathrm{P}$を通る放物線$D$を$y=g(x)$とする.$D$の点$\mathrm{P}$における接線が$(1)$で求めた$\ell$と一致するとき,$g(x)$を$a$を用いて表せ.さらに,定積分
\[ I=\int_0^1 g(x) \, dx \]
の値を$a$を用いて表せ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。