タグ「接線」の検索結果

43ページ目:全994問中421問~430問を表示)
名城大学 私立 名城大学 2014年 第1問
次の問について,答えを$[ ]$に記入せよ.

(1)$\displaystyle \tan 2\alpha=\frac{1}{2}$かつ$\tan \alpha>0$のとき,$\tan \alpha=[ア]$であり,また$\tan 3\alpha=[イ]$である.
(2)$r>0$に対し,中心$(-2,\ 7)$,半径$r^2+3r+4$の円$C_1$と中心$(3,\ -5)$,半径$2r^2+7r+1$の円$C_2$を考える.$C_1$と$C_2$がちょうど$3$本の共通接線をもつとき$r=[ウ]$であり,$C_1$と$C_2$が平行な共通接線をもつとき$r=[エ]$である.
武庫川女子大学 私立 武庫川女子大学 2014年 第3問
次の空欄$[$39$]$~$[$60$]$にあてはまる数字を入れよ.ただし,空欄$[$41$]$,$[$44$]$,$[$47$]$,$[$51$]$には$+$または$-$の記号が入る.

(1)$\displaystyle \lim_{x \to 2} \frac{5x^2+5x-30}{x-2}=[$39$][$40$]$である.
(2)$2$次関数$y=f(x)$のグラフは原点と点$\displaystyle \left( 1,\ \frac{17}{4} \right)$を通る.また,$x=2$において傾き$8$の接線をもつ.このとき,$f(x)$の最小値は$\displaystyle [$41$] \frac{[$42$]}{[$43$]}$である.
(3)$2$次関数$f(x)=ax^2+bx+c$(ただし,$a,\ b,\ c$は定数)がある.すべての実数$x$について$3f(x)+4f^\prime(x)=-2x^2+5x+7$が常に成立するとき,
\[ a=[$44$] \frac{[$45$]}{[$46$]},\quad b=[$47$] \frac{[$48$][$49$]}{[$50$]},\quad c=[$51$] \frac{[$52$][$53$]}{[$54$][$55$]} \]
である.
(4)$2$つの関数$\displaystyle f(x)=x-\frac{3}{a}$および$\displaystyle g(x)=ax^2+7x+\frac{6}{a}$がある(ただし,$a$は正の定数).$xy$平面上の$4$つのグラフ$y=f(x)$,$y=g(x)$,$x=0$および$x=1$で囲まれる図形の面積は$a=[$56$] \sqrt{[$57$]}$のとき最小値$[$58$]+[$59$] \sqrt{[$60$]}$をとる.
上智大学 私立 上智大学 2014年 第2問
$xyz$空間において,$xy$平面に原点$\mathrm{O}(0,\ 0,\ 0)$で接し,中心が$\mathrm{C}(0,\ 0,\ 1)$であるような球面を$S$とする.点$\mathrm{P}(2 \sqrt{3},\ 0,\ 3)$に点光源をおくとき,$xy$平面上にできる$S$の影$S^\prime$を考える.

(1)点$\mathrm{P}$から球面$S$に引いた接線の一つと球面との接点を$\mathrm{A}$とする.線分$\mathrm{PA}$の長さは$\sqrt{[キ]}$である.$\angle \mathrm{CPA}=\theta$とすると,$\displaystyle \sin \theta=\frac{[ク]}{[ケ]}$である.

(2)球面$S$上で光が当たる部分と影の部分との境界は,$\displaystyle \left( \frac{\sqrt{[コ]}}{[サ]},\ [シ],\ \frac{[ス]}{[セ]} \right)$を中心とし,半径が$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$の円である.
(3)影$S^\prime$は長軸の長さが$[チ] \sqrt{[ツ]}$の楕円の内部である.
上智大学 私立 上智大学 2014年 第3問
$\displaystyle f(x)=\frac{1}{4}(x^3-3x^2-9x+3)$とする.

(1)関数$f(x)$は,$x=[テ]$で極大値$[ト]$をとり,$x=[ナ]$で極小値$[ニ]$をとる.
(2)$y=f(x)$のグラフと$y$軸との交点における接線の方程式は,$\displaystyle y=\frac{[ヌ]}{[ネ]}x+\frac{[ノ]}{[ハ]}$である.
(3)実数からなる集合
\[ A=\{x \;|\; f(x)>0 \},\quad B=\{x \;|\; x \geqq b\} \]
を考える.ただし,$b$は整数とする.

(i) $A \subset B$となる最大の整数$b$は$[ヒ]$である.
(ii) $B \subset A$となる最小の整数$b$は$[フ]$である.
(iii) $b \in A$であり,$B \subset A$とならない整数$b$は$[ヘ]$個ある.
上智大学 私立 上智大学 2014年 第3問
$a$を$-1$でない実数とし,座標平面において,放物線
\[ C:y=(x^2-2x+1)+a(x^2-5x+6) \]
を考える.

(1)$C$は,$a$の値によらず$2$点$\mathrm{P}([ソ],\ [タ])$,$\mathrm{Q}([チ],\ [ツ])$を必ず通る.ただし,$[ソ]<[チ]$とする.
(2)点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{Q}$における$C$の接線を$\ell^\prime$とする.$\ell$と$\ell^\prime$の交点の座標は$\displaystyle \left( \frac{[テ]}{[ト]},\ \frac{[ナ]}{[ニ]}a+[ヌ] \right)$である.

(3)$C$の軸は$\displaystyle x=\frac{1}{2} \left( [ネ]+\frac{[ノ]}{a+[ハ]} \right)$である.

(4)$C$が$x$軸と異なる$2$点で交わるのは

$a<[ヒ]$ \ または \ $[フ]<a$ \quad (ただし$a \neq -1$)

のときである.
(5)$a=[フ]$のとき,$C$は点$\displaystyle \left( \frac{[ヘ]}{[ホ]},\ 0 \right)$で$x$軸と接する.
(6)$C$が$x$軸と$2$点$(\alpha,\ 0)$,$(\beta,\ 0)$(ただし$\alpha<\beta$)で交わるとき,$\displaystyle \beta-\alpha=\frac{2}{3} \sqrt{5}$となるのは,$a=[マ]$または$\displaystyle a=\frac{[ミ]}{[ム]}$のときである.ただし,$\displaystyle [マ]<\frac{[ミ]}{[ム]}$とする.$a=[マ]$のとき,$C$と$x$軸で囲まれた図形の面積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
立教大学 私立 立教大学 2014年 第3問
$a>0$とする.座標平面上に$2$つの放物線$C_1:y=x^2-2x+2$と$\displaystyle C_2:y=-\frac{1}{2}x^2+ax-\frac{3}{2}$がある.放物線$C_1$上の点$\mathrm{P}(2,\ 2)$を通り,点$\mathrm{P}$での接線に直交する直線を$\ell$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$2$つの放物線$C_1,\ C_2$が共有点をもたないとき,$a$の値の範囲を求めよ.
(3)直線$\ell$が放物線$C_2$に接しているとき,$a$の値と接点の座標を求めよ.
(4)$a$を$(3)$で求めた値としたとき,直線$\ell$と放物線$C_1,\ C_2$および$y$軸で囲まれる部分の面積を$S$とする.$S$の値を求めよ.
立教大学 私立 立教大学 2014年 第3問
座標平面上に放物線$\displaystyle y=x^2+\frac{1}{16}$と円$x^2+y^2-3y+1=0$がある.このとき,次の問に答えよ.

(1)円の中心の座標と半径を求めよ.
(2)円の中心と円周上の点$\displaystyle \left( \frac{1}{2},\ \frac{1}{2} \right)$を通る直線の傾きを求めよ.
(3)円周上の点$\displaystyle \left( \frac{1}{2},\ \frac{1}{2} \right)$における円の接線の方程式を求めよ.
(4)$(3)$で求めた接線と放物線のすべての交点の座標を求めよ.
(5)$(3)$で求めた接線と放物線で囲まれた部分の面積を求めよ.
北里大学 私立 北里大学 2014年 第2問
関数$f(x)=x^3-5x^2+3x+9$について,次の問に答えよ.

(1)方程式$f(x)=0$を解け.
(2)$f(x)$の増減を調べ,極値を求めよ.
(3)曲線$y=f(x)$の接線で,点$(3,\ -6)$を通るものの方程式を求めよ.
名城大学 私立 名城大学 2014年 第3問
$xy$平面上に,円$C:x^2+y^2=1$,$C$上に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$,および$C$の外に点$\displaystyle \mathrm{B} \left( \frac{3 \sqrt{5}}{5},\ -\frac{\sqrt{5}}{5} \right)$をとる.次の問に答えよ.

(1)$\mathrm{A}$における接線の方程式を求めよ.
(2)$\mathrm{B}$から$C$に引いた接線の傾きを求めよ.
(3)$\mathrm{B}$から$C$に引いた$2$本の接線の接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.直線$\mathrm{PQ}$の方程式を求めよ.
名城大学 私立 名城大学 2014年 第4問
$xy$平面上に,放物線$C_1:y=x^2-1$,$C_2:y=x^2$がある.$C_1$上を動く点$\mathrm{P}(p,\ p^2-1)$から$C_2$に$2$本の接線を引き,それらの接点を$\mathrm{Q}(\alpha,\ \alpha^2)$,$\mathrm{R}(\beta,\ \beta^2) (\alpha<\beta)$とする.さらに,$C_2$と$2$直線$\mathrm{PQ}$,$\mathrm{PR}$で囲まれる部分の面積を$S$とする.

(1)$\mathrm{P}$の座標を$\alpha,\ \beta$を用いて表せ.
(2)$S$を$\alpha,\ \beta$を用いて表せ.
(3)$S$は$\mathrm{P}$の位置によらず一定であることを示し,その値を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。