タグ「接線」の検索結果

40ページ目:全994問中391問~400問を表示)
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第4問
原点$\mathrm{O}$を中心とした半径$1$の円$C$がある.円$C$上の$1$点$\mathrm{A}(a_1,\ a_2)$,$a_i>0$,$i=1,\ 2$を考える.$\mathrm{OA}$が$x$軸となす角度を$\theta$とする.

(1)円$C^\prime$を中心$(b_1,\ b_2)$,$b_i>0$,$i=1,\ 2$,半径$1$の円とし,点$\mathrm{A}$と$(1,\ 0)$で円$C$と交わっているものとすると,$(b_1,\ b_2)=[$14$]$である.また円$C^\prime$の点$\mathrm{A}$における接線の方程式は$[$15$]$である.
(2)次に$\theta$を限りなく$0$に近づけていくとき,
\[ \theta,\ \sin \theta,\ \sqrt{2(1-\cos \theta)},\ 1-\cos \theta+\sin \theta \]
の値の大小関係が定まり,これらを小さい順に並べて,$a<b<c<d$とすると
\[ a=[$16$],\ b=[$17$],\ c=[$18$],\ d=[$19$] \]
であり,$\displaystyle \frac{d-a}{bc}$は$[$20$]$に近づく.
広島修道大学 私立 広島修道大学 2014年 第2問
放物線$y=-2x^2-2x+4$について,次の問いに答えよ.

(1)この放物線に点$(-1,\ 6)$から引いた$2$本の接線の方程式を求めよ.
(2)$(1)$で求めた$2$本の接線と$x$軸でつくられた三角形の面積を$S_1$とし,この放物線と$x$軸で囲まれた部分の面積を$S_2$とする.このとき,$|S_1-S_2|$の値を求めよ.
広島修道大学 私立 広島修道大学 2014年 第3問
直線$y=-x+5$を$\ell$とするとき,次の問に答えよ.

(1)曲線$y=x^3-3x^2+2x+4$上の点$\mathrm{P}$における接線が直線$\ell$であるとき,点$\mathrm{P}$の座標を求めよ.
(2)$b,\ c$を定数とする,放物線$y=x^2+bx+c$上の点$\mathrm{Q}$における接線が直線$\ell$であるとき,定数$c$の値が最小となるように点$\mathrm{Q}$の座標を定めよ.
大阪薬科大学 私立 大阪薬科大学 2014年 第2問
次の問いに答えなさい.

$t$を実数とする.座標平面上の$2$次関数$y=f(x)$のグラフ$C$は,軸が$y$軸,頂点が原点$\mathrm{O}$の放物線であり,点$(-2,\ 1)$を通る.$C$上の点$\mathrm{P}(t,\ f(t))$における接線を$\ell$とし,点$\mathrm{Q}(-1,\ 0)$を通り,$\ell$と垂直な直線を$m$とする.

(1)$f(1)$の値は$[$\mathrm{E]$}$である.
(2)$\ell$の方程式を$t$を用いて表すと,$y=[$\mathrm{F]$}$である.
(3)$t$が$-1 \leqq t \leqq 1$の範囲を動くとき,線分$\mathrm{PQ}$を$1:2$に外分する点$\mathrm{G}$の軌跡を求め,またそれを図示しなさい.
(4)$m$が$C$の接線となるとき,$t=[$\mathrm{G]$}$である.このとき,$C$と$\ell$および$m$で囲まれる部分の面積は$[$\mathrm{H]$}$である.
早稲田大学 私立 早稲田大学 2014年 第3問
条件$\log_2 (y-1)=\log_2 (x-2)+\log_2 (x-3)$を満たす点$(x,\ y)$全体の集合が$xy$平面上に描く曲線を$A$とする.次の問に答えよ.

(1)曲線$A$を図示せよ.
(2)直線$y=\alpha x+\beta$が曲線$A$の接線であるとき,$\alpha$と$\beta$の間に成り立つ関係式を求めよ.また,$\alpha$と$\beta$の取り得る値の範囲を求めよ.
(3)直線$y=ax+b$が曲線$A$と共有点をもたないような$a,\ b$の条件を求めよ.
津田塾大学 私立 津田塾大学 2014年 第4問
関数$\displaystyle f(x)=\frac{2}{2-x}$について,以下の問に答えよ.

(1)$y=f(x)$のグラフをかけ.

(2)定積分$\displaystyle \int_0^1 f(x) \, dx$を求めよ.

(3)$0 \leqq a \leqq 1$とし,点$(a,\ f(a))$における曲線$y=f(x)$の接線を$y=g(x)$とする.定積分$\displaystyle \int_0^1 g(x) \, dx$の値$S$を最大にする$a$の値と,そのときの$S$の値を求めよ.
津田塾大学 私立 津田塾大学 2014年 第3問
関数$f(t)=2 |t-1|$について,次の問に答えよ.

(1)$\displaystyle g(x)=\int_0^x f(t) \, dt$とおく.$g(x)$を求めよ.
(2)曲線$y=g(x)$のグラフをかけ.
(3)曲線$y=g(x)$と,点$(2,\ g(2))$における$y=g(x)$の接線で囲まれた領域の面積を求めよ.
早稲田大学 私立 早稲田大学 2014年 第5問
$2$次関数$y=x^2-1$のグラフ上の点$(1,\ 0)$における接線を$\ell$とする.直線$\ell$と点$(1,\ 0)$で接する円$C$の方程式は,実数$t$を用いて
\[ (x+[ヌ]t+[ネ])^2+(y-t)^2=[ノ] t^2 \]
と表される.円$C$と放物線$y=x^2-1$の共有点の個数が$2$個となる$t$は小さい順に$\displaystyle \frac{[ハ]}{[ヒ]}$と$\displaystyle \frac{[フ]}{[ヘ]}$である.
神奈川大学 私立 神奈川大学 2014年 第3問
$x>0$に対して,曲線$\displaystyle C:y=\frac{1}{x^2}$上の点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{t^2} \right)$における接線を$\ell$とし,$\ell$と$x$軸との交点を$\mathrm{Q}$とする.また,点$(t,\ 0)$を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式と点$\mathrm{Q}$の座標を求めよ.
(2)三角形$\mathrm{PHQ}$の面積$S_1$を求めよ.
(3)曲線$C$,線分$\mathrm{PQ}$および$\mathrm{Q}$を通る$y$軸に平行な直線で囲まれた部分の面積を$S_2$とする.このとき,$\displaystyle \frac{S_1}{S_2}$を求めよ.
早稲田大学 私立 早稲田大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に

放物線$C_1:y=x^2$,円$C_2:x^2+(y-a)^2=1 \quad (a \geqq 0)$

がある.$C_2$の点$(0,\ a+1)$における接線と$C_1$が$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,$\triangle \mathrm{OAB}$が$C_2$に外接しているとする.次の問に答えよ.

(1)$a$を求めよ.
(2)点$(s,\ t)$を$(-1,\ a)$,$(1,\ a)$,$(0,\ a-1)$と異なる$C_2$上の点とする.そして点$(s,\ t)$における$C_2$の接線と$C_1$との$2$つの交点を$\mathrm{P}(\alpha,\ \alpha^2)$,$\mathrm{Q}(\beta,\ \beta^2)$とする.このとき,${(\alpha-\beta)}^2-\alpha^2 \beta^2$は$s,\ t$によらない定数であることを示せ.
(3)$(2)$において,点$\mathrm{P}(\alpha,\ \alpha^2)$から$C_2$への$2$つの接線が再び$C_1$と交わる点を$\mathrm{Q}(\beta,\ \beta^2)$,$\mathrm{R}(\gamma,\ \gamma^2)$とする.$\beta+\gamma$および$\beta\gamma$を$\alpha$を用いて表せ.
(4)$(3)$の$2$点$\mathrm{Q}$,$\mathrm{R}$に対し,直線$\mathrm{QR}$は$C_2$と接することを示せ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。