タグ「接線」の検索結果

38ページ目:全994問中371問~380問を表示)
自治医科大学 私立 自治医科大学 2014年 第25問
点$\displaystyle \mathrm{P}(\cos^4 \theta,\ -\sin^4 \theta) (0 \leqq \theta \leqq \frac{\pi}{2})$の軌跡を曲線$C$とし,$\displaystyle \theta=\frac{\pi}{6}$における曲線$C$の接線を直線$L$とする.曲線$C$,直線$L$,$y$軸で囲まれた面積を$S$とする.$128S$の値を求めよ.
東北工業大学 私立 東北工業大学 2014年 第4問
$3$次関数$f(x)=x^3-ax^2-3bx-10$がある.

(1)関数$f(x)$が$x=-2,\ 4$で極値をとるならば,$a=[マ][ミ]$,$b=[ム][メ]$である.
(2)関数$y=f(x)$のグラフが点$(3,\ -1)$を通り,この点における接線の傾きが$3$であるならば,$a=[モ][ヤ]$,$b=-[ユ][ヨ]$である.
(3)$a+b=0$のとき,関数$f(x)$が常に増加するならば,$0 \leqq a \leqq [ラ][リ]$である.
埼玉工業大学 私立 埼玉工業大学 2014年 第3問
曲線$\ell:y=\log x (1 \leqq x \leqq 2)$上の点$(t,\ \log t)$における$\ell$の接線の方程式は
\[ y=\frac{[ハ]}{t}x+\log t-[ヒ] \]
であり,この接線と直線$x=1$,$x=2$および$\ell$で囲まれた図形の面積$S$は,
\[ S=\frac{[フ]}{2t}+\log t-[ヘ] \log 2 \]
である.$\displaystyle t=\frac{[ホ]}{[マ]}$のとき,$S$は最小値$\displaystyle 1+\log \frac{[ミ]}{[ム]}$をとる.
北海道薬科大学 私立 北海道薬科大学 2014年 第3問
円$(x-2)^2+(y-3)^2=9$と放物線$y=x^2-4x+a+4$($a$は定数)は,$2$つの点で接している.

(1)$a$の値は$\displaystyle \frac{[アイウ]}{[エ]}$である.
(2)接点の座標は$\displaystyle \left( [オ] \pm \frac{\sqrt{[カキ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right)$であり,$2$つの接線の方程式は$y=\pm \sqrt{[サシ]}(x-[ス])+[セソタ]$である(複号同順).
(3)$(2)$で得られた$2$つの接線の交点の座標は$([チ],\ [ツテト])$である.
神戸薬科大学 私立 神戸薬科大学 2014年 第5問
次の問いに答えよ.

(1)軸が直線$x=2$で,$2$点$(4,\ 1)$,$(3,\ 7)$を通る放物線$C_1$の方程式を求めると$[シ]$である.また,点$(4,\ 1)$における放物線$C_1$の接線の方程式を求めると$[ス]$である.
(2)放物線$C_1$を原点に関して対称移動して得られる放物線$C_2$の方程式を求めると$[セ]$である.
(3)$2$つの放物線$C_1,\ C_2$で囲まれた部分の面積を求めると$[ソ]$である.
(4)放物線$C_2$を$y$軸方向に平行移動すると,放物線$C_1$と$1$点で接した.平行移動して得られた放物線の方程式は$[タ]$である.
福岡大学 私立 福岡大学 2014年 第6問
関数$\displaystyle f(x)=2x-1+2 \cos^2 x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$について,次の問いに答えよ.

(1)曲線$y=f(x)$の変曲点を求めよ.
(2)曲線$y=f(x)$の変曲点における接線と曲線$y=f(x)$および$y$軸とで囲まれる部分の面積を求めよ.
近畿大学 私立 近畿大学 2014年 第3問
$a,\ b$を正の定数とし,関数
\[ f(x)=\frac{1}{e^{\frac{x-a}{b}}+2} \quad (x>0) \]
を考える.

(1)$x>a$のとき,$\displaystyle \lim_{b \to +0}f(x)=[ア]$であり,$x<a$のとき,$\displaystyle \lim_{b \to +0}f(x)=\frac{[イ]}{[ウ]}$である.
(2)曲線$y=f(x)$の点$(a,\ f(a))$における接線の方程式は,$\displaystyle y=\frac{[エオ]}{[カ]b}x+\frac{a+[キ]b}{[ク]b}$である.
(3)$\displaystyle b=\frac{1}{3}$とする.$t=e^{3(x-a)}$とおくと,$\displaystyle \frac{dx}{dt}=\frac{1}{[ケ]t}$であり,正の定数$c$に対して,
\[ \int_a^{a+c}f(x) \, dx=\frac{1}{[コ]} \log \left( \frac{[サ]e^{3c}}{e^{3c}+[シ]} \right) \]
となる.また,正の定数$p,\ q$が,$\displaystyle \int_{a-q}^{a+p} f(x) \, dx=\frac{4}{3}p$を満たすとき,
\[ q=\frac{1}{[ス]} \log \left( \frac{e^{[セ]p}+[ソ]e^{[タ]p}-1}{[チ]} \right) \]
となる.
福岡大学 私立 福岡大学 2014年 第8問
曲線$C:y=xe^{2x}$について,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)曲線$C$の変曲点$\mathrm{P}$の座標を求めよ.
(2)点$\mathrm{P}$における接線と$y$軸および曲線$C$によって囲まれる部分の面積を求めよ.
福岡大学 私立 福岡大学 2014年 第9問
$f(x)=(x+a)e^{-x} (a \neq 0)$とする.曲線$y=f(x)$が原点を通る接線をただ$1$つもつとき,次の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$a$の値を求めよ.
(2)$(1)$のとき,この曲線と$y$軸およびこの曲線の変曲点を通る接線とで囲まれる部分の面積を求めよ.
愛知工業大学 私立 愛知工業大学 2014年 第2問
$x>0$において,つねに正の値をとる連続な関数$f(x)$がある.$xy$平面において,$0<a<b$をみたすすべての実数$a,\ b$に対して,曲線$y=f(x)$,$x$軸,直線$x=a$および直線$x=b$で囲まれた部分の面積$S$は
\[ S=\frac{1}{a}-\frac{1}{b} \]
であるとする.

(1)$f(x)$を求めよ.
(2)$c>0$とする.曲線$y=f(x)$上の点$(c,\ f(c))$における接線,$x$軸および$y$軸で囲まれた三角形の面積を$T$とするとき,$\displaystyle \lim_{c \to \infty}T$を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。