タグ「接線」の検索結果

37ページ目:全994問中361問~370問を表示)
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
京都教育大学 国立 京都教育大学 2014年 第6問
曲線$y=\log 2x$上の点$\displaystyle \mathrm{P}(t,\ \log 2t) \left( 0<t<\frac{1}{2} \right)$における接線$\ell$が$x$軸と交わる点を$\mathrm{A}$,$y$軸と交わる点を$\mathrm{B}$,原点を$\mathrm{O}$とおく.このとき,次の問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)三角形$\mathrm{OAB}$の面積$S$を求めよ.
(3)$S$の最大値とそのときの点$\mathrm{P}$の座標を求めよ.
信州大学 国立 信州大学 2014年 第1問
次の$3$つの条件によって定められる数列$\{a_n\}$の一般項を求めよ.

(i) $a_1=0$
(ii) $a_1<a_2<\cdots<a_n<a_{n+1}<\cdots$
(iii) 放物線$y=x^2$と,その上の点$(a_n,\ {a_n}^2)$における接線と,直線$x=a_{n+1}$とで囲まれる図形の面積が$8^n$になる.
福島大学 国立 福島大学 2014年 第5問
$a,\ b$を正の定数とし,関数$y=f(x)$,$y=g(x)$を次のように定める.


$f(x)=2 \sqrt{x-a} \quad (x \geqq a)$

$\displaystyle g(x)=\frac{x^2}{4}+b \quad (x \geqq 0)$


$y=f(x)$のグラフを$C_1$,$y=g(x)$のグラフを$C_2$とし,$C_1$と$C_2$は$1$点$\mathrm{P}$において接している.すなわち,点$\mathrm{P}$は$C_1$,$C_2$上にあり,点$\mathrm{P}$におけるそれぞれの接線は一致する.

(1)関数$y=f(x)$の導関数を求めなさい.
(2)点$\mathrm{P}$の$x$座標を$t$とするとき,$a$および$b$を$t$を用いて表しなさい.
(3)$t$の値の範囲を求めなさい.
(4)$C_1$,$C_2$,$x$軸,$y$軸で囲まれた図形の面積$S$を$t$を用いて表しなさい.
(5)$S$の最大値と,そのときの$t$の値を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
以下の文章の空欄に適切な式を入れて文章を完成させなさい.また$(3) \ (ⅱ)$に答えなさい.

放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$を$C$で表す.$C$上にない点$\displaystyle \mathrm{P}(X,\ Y) \left( \text{ただし} Y<\frac{1}{2}X^2+\frac{1}{2} \right)$から$C$に引いた$2$本の接線のうち,接点の$x$座標が小さい方を$\ell_1$とし,大きい方を$\ell_2$とする.また$\ell_1$,$\ell_2$と$C$との接点をそれぞれ$\mathrm{Q}_1$,$\mathrm{Q}_2$とする.


(1)接線$\ell_1,\ \ell_2$の傾き$m_1,\ m_2$はそれぞれ$m_1=[あ]$,$m_2=[い]$である.
(2)$\mathrm{Q}_1$,$\mathrm{Q}_2$における$C$の法線をそれぞれ$L_1$,$L_2$とするとき,$L_1$と$L_2$の交点$\mathrm{R}$の座標を$X,\ Y$を用いた式で表すと
\[ \left( [う],\ [え] \right) \]
である.
(3)$\angle \mathrm{Q}_1 \mathrm{PQ}_2$が一定値$\alpha$(ただし$0<\alpha<\pi$)となるような点$\mathrm{P}(X,\ Y)$の軌跡を$S(\alpha)$で表す.

(i) $\displaystyle S \left( \frac{\pi}{2} \right)$の方程式は$[お]$である.

(ii) $\displaystyle \alpha \neq \frac{\pi}{2}$のときに$S(\alpha)$を求めなさい.

(4)点$\mathrm{P}(X,\ Y)$が$\displaystyle S \left( \frac{\pi}{2} \right)$の上を動くとき,点$\mathrm{R}$が描く軌跡の方程式は$[か]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$\mathrm{O}$を原点とする$xy$平面上に円$C:x^2+y^2=r^2$と放物線$\displaystyle D:y=\frac{1}{2}x^2-t$がある.ただし$r$と$t$はそれぞれ正の実数の定数とする.点$(0,\ -55)$から放物線$D$に傾きが正の接線を引くとき,その接線の傾きは$3 \sqrt{6}$である.放物線$D$上には$x$座標がそれぞれ$-4 \sqrt{3}$,$4 \sqrt{3}$である点$\mathrm{P}$,$\mathrm{Q}$があり,円$C$はこの$2$点$\mathrm{P}$,$\mathrm{Q}$を通る.このとき,

(1)$t=[$40$][$41$]$である.
(2)$r=[$42$]$である.
(3)円$C$と$2$線分$\mathrm{OP}$,$\mathrm{OQ}$で囲まれる$2$つの扇形のうち,$\angle \mathrm{POQ}$が$\pi$より小さい方の面積は$\displaystyle \frac{[$43$][$44$]}{[$45$]} \pi$である.
(4)円$C$と放物線$D$で囲まれた図形のうち,
\[ \left\{ \begin{array}{l}
x^2+y^2 \geqq r^2 \\
y \geqq \displaystyle\frac{1}{2}x^2-t
\end{array} \right. \]
で表される図形の面積は$\displaystyle [$46$][$47$][$48$] \sqrt{[$49$]}-\frac{[$50$][$51$]}{[$52$]} \pi$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
以下の$[ト]$,$[ナ]$,$[ニ]$には三角関数は$\sin \theta$と$\cos \theta$のみを用いて記入し,$[ヌ]$には$x$の式,$[ネ]$には$y$の式を記入すること.

座標平面上の$2$点$(1,\ 0)$,$(0,\ 1)$を結ぶ曲線$C$が媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=f(\theta) \\
y=g(\theta)
\end{array} \right. \quad \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right) \]
と表されているとする.いま,関数$f(\theta)$,$g(\theta)$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$で連続,$\displaystyle 0<\theta<\frac{\pi}{2}$で微分可能かつ$f^\prime(\theta) \neq 0$であるとする.また$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,点$(f(\theta),\ g(\theta))$における曲線$C$の接線の傾きが$-\tan \theta$であり,この接線から$x$軸,$y$軸で切り取られる線分の長さがつねに一定で$1$であるとする.
まず,この曲線$C$の方程式を求めたい.$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,曲線$C$上の点$(f(\theta),\ g(\theta))$における接線を$y=-(\tan \theta)x+h(\theta)$と表すと$h(\theta)=[ト]$となる.この接線の傾きが$\displaystyle \frac{g^\prime(\theta)}{f^\prime(\theta)}$となることより,$f(\theta)=[ナ]$,$g(\theta)=[ニ]$となる.したがって,曲線$C$を$x,\ y$の方程式で表すと
\[ [ヌ]+[ネ]=1 \quad (x \geqq 0,\ y \geqq 0) \]
となる.
次に,点$(f(\theta),\ g(\theta))$における曲線$C$の法線を$\ell(\theta)$とする.$\displaystyle \theta \neq \frac{\pi}{4}$のとき$\ell(\theta)$と$\displaystyle \ell \left( \frac{\pi}{4} \right)$との交点の$x$座標を$X(\theta)$とすると,$\displaystyle \lim_{\theta \to \frac{\pi}{4}} X(\theta)=[ノ]$となる.
また,曲線$C$と$x$軸,$y$軸で囲まれた部分の面積は$[ハ]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$a,\ b,\ c$を実数とする.$x$の関数$F(x)$を
\[ F(x)=\frac{1}{3}x^3+ax^2+bx+c \]
と定め,
\[ f(x)=F^\prime(x) \]
とおく.関数$F(x)$は$x=\alpha$において極大に,$x=\beta$において極小になるとする.点$(\alpha,\ f(\alpha))$,$(\beta,\ f(\beta))$における曲線$y=f(x)$の接線をそれぞれ$\ell_\alpha$,$\ell_\beta$とする.

(1)直線$\ell_\alpha$と$\ell_\beta$の交点の座標は
\[ \left( \frac{[$15$]}{[$16$]} \alpha+\frac{[$17$]}{[$18$]} \beta,\ \frac{[$19$][$20$]}{[$21$]} (\beta-\alpha)^2 \right) \]
である.
(2)曲線$y=f(x)$と直線$\ell_\alpha$,$\ell_\beta$とで囲まれた図形の面積を$S$とすると,
\[ S=\frac{[$22$]}{[$23$][$24$]} (\beta-\alpha)^3 \]
である.必要なら次の公式を使ってよい.$r$を実数とすると
\[ \int (x+r)^2 \, dx=\frac{1}{3}(x+r)^3+C \quad (C \text{は定数}) \]
(3)実数$a,\ b$が不等式
\[ 0 \leqq a \leqq 2,\quad 2a-4 \leqq b \leqq 2a-2 \]
をみたす範囲を動くとき,$S$の最大値は$\displaystyle \frac{[$25$][$26$]}{[$27$]}$,最小値は$\displaystyle \frac{[$28$][$29$]}{[$30$]}$である.
自治医科大学 私立 自治医科大学 2014年 第13問
円$C_1:x^2+y^2=1$,円$C_2:(x-4)^2+y^2=25$について考える.点$\mathrm{R}(2,\ 0)$から円$C_1$にひいた接線を直線$L$とする(直線$L$の傾きは負の実数とする).このとき,円$C_2$と直線$L$は$2$つの異なる点$\mathrm{P}$,$\mathrm{Q}$で交わる.線分$\mathrm{PQ}$の長さを$a$としたとき,$\displaystyle \frac{a}{\sqrt{6}}$の値を求めよ.
自治医科大学 私立 自治医科大学 2014年 第14問
楕円$\displaystyle \frac{x^2}{4}+\frac{y^2}{9}=1$上の点$\displaystyle \left( \sqrt{3},\ -\frac{3}{2} \right)$における接線の傾きを$k$とする.$\displaystyle \frac{4k^2}{3}$の値を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。