タグ「接線」の検索結果

29ページ目:全994問中281問~290問を表示)
広島大学 国立 広島大学 2014年 第2問
$a_1,\ a_2,\ a_3$は定数で,$a_1>0$とする.放物線$C:y=a_1x^2+a_2x+a_3$上の点$\mathrm{P}(2,\ 4a_1+2a_2+a_3)$における接線を$\ell$とし,$\ell$と$x$軸との交点を$\mathrm{Q}(q,\ 0)$,$\ell$と$y$軸との交点を$\mathrm{R}(0,\ a_4)$とする.$a_1$,$a_2$,$a_3$,$a_4$がこの順に等差数列であるとき,次の問いに答えよ.

(1)$a_2,\ a_3,\ a_4$を$a_1$を用いて表せ.
(2)$q$の値を求めよ.
(3)放物線$C$,接線$\ell$,および$y$軸で囲まれた部分の面積を$S$とする.$S=q$となるとき,$a_1$を求めよ.
北海道大学 国立 北海道大学 2014年 第1問
$2$つの放物線
\[ C_1:y=-x^2+\frac{3}{2},\quad C_2:y=(x-a)^2+a \quad (a>0) \]
がある.点$\displaystyle \mathrm{P}_1 \left( p,\ -p^2+\frac{3}{2} \right)$における$C_1$の接線を$\ell_1$とする.

(1)$C_1$と$C_2$が共有点を持たないための$a$に関する条件を求めよ.
(2)$\ell_1$と平行な$C_2$の接線$\ell_2$の方程式と,$\ell_2$と$C_2$の接点$\mathrm{P}_2$の座標を$a,\ p$を用いて表せ.
(3)$C_1$と$C_2$が共有点を持たないとする.$(2)$で求めた$\mathrm{P}_2$と$\mathrm{P}_1$を結ぶ線分が$\ell_1$と垂直になるとき,$p$を求めよ.
東京工業大学 国立 東京工業大学 2014年 第5問
$xy$平面上の曲線$C:y=x^3+x^2+1$を考え,$C$上の点$(1,\ 3)$を$\mathrm{P}_0$とする.$k=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_{k-1}(x_{k-1},\ y_{k-1})$における$C$の接線と$C$の交点のうちで$\mathrm{P}_{k-1}$と異なる点を$\mathrm{P}_k(x_k,\ y_k)$とする.このとき,$\mathrm{P}_{k-1}$と$\mathrm{P}_k$を結ぶ線分と$C$によって囲まれた部分の面積を$S_k$とする.

(1)$S_1$を求めよ.
(2)$x_k$を$k$を用いて表せ.

(3)$\displaystyle \sum_{k=1}^\infty \frac{1}{S_k}$を求めよ.
東北大学 国立 東北大学 2014年 第1問
曲線$C:y=x^2$上の点$\mathrm{P}(a,\ a^2)$における接線を$\ell_1$,点$\mathrm{Q}(b,\ b^2)$における接線を$\ell_2$とする.ただし,$a<b$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とし,線分$\mathrm{PR}$,線分$\mathrm{QR}$および曲線$C$で囲まれる図形の面積を$S$とする.

(1)$\mathrm{R}$の座標を$a$と$b$を用いて表せ.
(2)$S$を$a$と$b$を用いて表せ.
(3)$\ell_1$と$\ell_2$が垂直であるときの$S$の最小値を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第5問
以下の問いに答えよ.

(1)$t>0$のとき
\[ e^t>1+t+\frac{t^2}{2}+\frac{t^3}{6} \]
が成り立つことを示せ.
(2)座標平面上の点$(0,\ a)$を通って曲線$y=xe^x$に何本の接線が引けるか求めよ.
筑波大学 国立 筑波大学 2014年 第1問
$f(x)=x^3-x$とする.$y=f(x)$のグラフに点$\mathrm{P}(a,\ b)$から引いた接線は$3$本あるとする.$3$つの接点$\mathrm{A}(\alpha,\ f(\alpha))$,$\mathrm{B}(\beta,\ f(\beta))$,$\mathrm{C}(\gamma,\ f(\gamma))$を頂点とする三角形の重心を$\mathrm{G}$とする.

(1)$\alpha+\beta+\gamma$,$\alpha\beta+\beta\gamma+\gamma\alpha$および$\alpha\beta\gamma$を$a,\ b$を用いて表せ.
(2)点$\mathrm{G}$の座標を$a,\ b$を用いて表せ.
(3)点$\mathrm{G}$の$x$座標が正で,$y$座標が負となるような点$\mathrm{P}$の範囲を図示せよ.
筑波大学 国立 筑波大学 2014年 第3問
関数$f(x)=e^{-\frac{x^2}{2}}$を$x>0$で考える.$y=f(x)$のグラフの点$(a,\ f(a))$における接線を$\ell_a$とし,$\ell_a$と$y$軸との交点を$(0,\ Y(a))$とする.以下の問いに答えよ.ただし,実数$k$に対して$\displaystyle \lim_{t \to \infty}t^ke^{-t}=0$であることは証明なしで用いてよい.

(1)$Y(a)$がとりうる値の範囲を求めよ.
(2)$0<a<b$である$a,\ b$に対して,$\ell_a$と$\ell_b$が$x$軸上で交わるとき,$a$のとりうる値の範囲を求め,$b$を$a$で表せ.
(3)$(2)$の$a,\ b$に対して,$Z(a)=Y(a)-Y(b)$とおく.$\displaystyle \lim_{a \to +0}Z(a)$および$\displaystyle \lim_{a \to +0} \frac{Z^\prime(a)}{a}$を求めよ.
筑波大学 国立 筑波大学 2014年 第6問
$xy$平面上に楕円
\[ C_1:\frac{x^2}{a^2}+\frac{y^2}{9}=1 \quad (a>\sqrt{13}) \]
および双曲線
\[ C_2:\frac{x^2}{4}-\frac{y^2}{b^2}=1 \quad (b>0) \]
があり,$C_1$と$C_2$は同一の焦点をもつとする.また$C_1$と$C_2$の交点
\[ \mathrm{P} \left( 2 \sqrt{1+\frac{t^2}{b^2}},\ t \right) \quad (t>0) \]
における$C_1$,$C_2$の接線をそれぞれ$\ell_1$,$\ell_2$とする.

(1)$a$と$b$の間に成り立つ関係式を求め,点$\mathrm{P}$の座標を$a$を用いて表せ.
(2)$\ell_1$と$\ell_2$が直交することを示せ.
(3)$a$が$a>\sqrt{13}$を満たしながら動くときの点$\mathrm{P}$の軌跡を図示せよ.
広島大学 国立 広島大学 2014年 第2問
二つの関数$f(x)=x \sin x$,$g(x)=\sqrt{3}x \cos x$について次の問いに答えよ.ただし,$(3)$と$(4)$において,$a$および$h(x)$は$(2)$で定めたものとする.

(1)$2$曲線$y=f(x)$,$y=g(x)$の共有点のうち,$x$座標が$-\pi \leqq x \leqq \pi$であるものをすべて求めよ.
(2)$(1)$で求めた共有点のうち,$x$座標が正である点を$\mathrm{A}(a,\ f(a))$とする.点$\mathrm{A}$における曲線$y=g(x)$の接線を$y=h(x)$と表す.$h(x)$を求めよ.
(3)$0 \leqq x \leqq a$のとき,$h(x) \geqq g(x)$であることを示せ.
(4)$0 \leqq x \leqq a$の範囲において,$y$軸,曲線$y=g(x)$,および直線$y=h(x)$で囲まれた部分の面積を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。