タグ「接線」の検索結果

13ページ目:全994問中121問~130問を表示)
広島大学 国立 広島大学 2015年 第1問
$a,\ b,\ c$を実数とし,$a<1$とする.座標平面上の$2$曲線
\[ C_1:y=x^2-x,\quad C_2:y=x^3+bx^2+cx-a \]
を考える.$C_1$と$C_2$は,点$\mathrm{P}(1,\ 0)$と,それとは異なる点$\mathrm{Q}$を通る.また,点$\mathrm{P}$における$C_1$と$C_2$の接線の傾きは等しいものとする.点$\mathrm{P}$における$C_1$の接線を$\ell_1$,点$\mathrm{Q}$における$C_1$の接線を$\ell_2$,点$\mathrm{Q}$における$C_2$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$b,\ c$および点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)$\ell_1,\ \ell_2,\ \ell_3$が三角形をつくらないような$a$の値を求めよ.
(3)$\ell_1,\ \ell_2,\ \ell_3$が直角三角形をつくるような$a$の値の個数を求めよ.
旭川医科大学 国立 旭川医科大学 2015年 第3問
曲線$C:y=\sin^2 x$について,$C$上の点$\displaystyle (t,\ \sin^2 t) \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における$C$の接線と直線$x=a$との交点を$\mathrm{P}$とする.ただし,$a$は$\displaystyle 0 \leqq a \leqq \frac{\pi}{2}$を満たす定数とする.このとき,次の問いに答えよ.

(1)点$\mathrm{P}$の$y$座標を$f(t)$とおくとき,$f(t)$を求めよ.
(2)関数$f(t)$の増減を調べ,その最大値と最小値を求めよ.
(3)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,点$(t,\ \sin^2 t)$における$C$の接線が通るすべての点のうち,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$となるものの範囲を$xy$平面に図示せよ.
岡山大学 国立 岡山大学 2015年 第4問
$2$次関数$y=f(x)$のグラフは,上に凸であり,原点および点$\mathrm{Q}(a,\ 0)$を通るものとする.ただし,$0<a<1$である.関数$y=x^2$のグラフを$C$,関数$y=f(x)$のグラフを$D$とし,$C$と$D$の共有点のうち,原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C$の接線の傾きを$m$,$D$の接線の傾きを$n$とするとき
\[ (2a-1)m=2an \]
が成り立つとする.このとき,次の問いに答えよ.

(1)$f(x)$を$x$と$a$の式で表せ.
(2)$0 \leqq x \leqq a$の範囲で,曲線$D$と$x$軸で囲まれた図形の面積を$S(a)$とする.$S(a)$を$a$の式で表せ.
(3)$(2)$で求めた$S(a)$の$0<a<1$における最大値を求めよ.
金沢大学 国立 金沢大学 2015年 第2問
$a,\ b$は定数で,$ab>0$とする.放物線$C_1:y=ax^2+b$上の点$\mathrm{P}(t,\ at^2+b)$における接線を$\ell$とし,放物線$C_2:y=ax^2$と$\ell$で囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$と$C_2$のすべての交点の$x$座標を求めよ.
(3)点$\mathrm{P}$が$C_1$上を動くとき,$S$は点$\mathrm{P}$の位置によらず一定であることを示せ.
岡山大学 国立 岡山大学 2015年 第3問
自然数$n=1,\ 2,\ 3,\ \cdots$に対して,関数$f_n(x)=x^{n+1}(1-x)$を考える.

(1)曲線$y=f_n(x)$上の点$(a_n,\ f_n(a_n))$における接線が原点を通るとき,$a_n$を$n$の式で表せ.ただし,$a_n>0$とする.
(2)$0 \leqq x \leqq 1$の範囲で,曲線$y=f_n(x)$と$x$軸とで囲まれた図形の面積を$B_n$とする.また,$(1)$で求めた$a_n$に対して,$0 \leqq x \leqq a_n$の範囲で,曲線$y=f_n(x)$,$x$軸,および直線$x=a_n$で囲まれた図形の面積を$C_n$とする.$B_n$および$C_n$を$n$の式で表せ.
(3)$(2)$で求めた$B_n$および$C_n$に対して,極限値$\displaystyle \lim_{n \to \infty} \frac{C_n}{B_n}$を求めよ.ただし,$\displaystyle \lim_{n \to \infty} \left( 1+\frac{1}{n} \right)^n$が自然対数の底$e$であることを用いてよい.
名古屋工業大学 国立 名古屋工業大学 2015年 第1問
次の問いに答えよ.

(1)$x \geqq 1$のとき,不等式$2 \sqrt{x}>1+\log x$が成り立つことを証明せよ.
(2)関数$y=x \log x (x>0)$のグラフを曲線$C$とする.定数$a$に対し,曲線$C$の接線で点$(a,\ 0)$を通るものは何本あるか.
(3)$(2)$で定められた曲線$C$とその傾き$2$の接線および直線$x=e^{-2}$で囲まれた部分の面積を求めよ.
東北大学 国立 東北大学 2015年 第4問
$a>0$を実数とする.関数$f(t)=-4t^3+(a+3)t$の$0 \leqq t \leqq 1$における最大値を$M(a)$とする.

(1)$M(a)$を求めよ.
(2)実数$x>0$に対し,$g(x)=M(x)^2$とおく.$xy$平面において,関数$y=g(x)$のグラフに点$(s,\ g(s))$で接する直線が原点を通るとき,実数$s>0$とその接線の傾きを求めよ.
(3)$a$が正の実数全体を動くとき,
\[ k=\frac{M(a)}{\sqrt{a}} \]
の最小値を求めよ.
新潟大学 国立 新潟大学 2015年 第3問
$f(x)=x^2-2x+2$とする.放物線$y=f(x)$上の点$\mathrm{P}(p,\ f(p))$における接線を$\ell_1$とし,放物線$y=f(x)$上の点$\mathrm{Q}(p+1,\ f(p+1))$における接線を$\ell_2$とする.$2$直線$\ell_1$,$\ell_2$の交点を$\mathrm{R}$とする.ただし$p$は定数である.次の問いに答えよ.

(1)直線$\ell_1,\ \ell_2$の方程式をそれぞれ$p$を用いて表せ.
(2)交点$\mathrm{R}$の座標を$p$を用いて表せ.
(3)放物線$y=f(x)$と$2$直線$\ell_1,\ \ell_2$とで囲まれた部分の面積を求めよ.
埼玉大学 国立 埼玉大学 2015年 第3問
$f(x)=x^4-2x^3$とし,曲線$C:y=f(x)$上の点$\mathrm{P}(\alpha,\ f(\alpha))$における接線を$\ell$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\alpha=1$のとき,$\ell$と$C$との$\mathrm{P}$以外の共有点をすべて求めよ.
(3)$\ell$と$C$が$\mathrm{P}$以外に$2$つの共有点を持つような$\alpha$の範囲を求めよ.
(4)$\ell$と$C$が$\mathrm{P}$以外の共有点$(\beta,\ f(\beta))$,$(\gamma,\ f(\gamma)) (\beta<\gamma)$を持つとする.このとき,$\gamma-\beta$が最大となる$\alpha$の値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第3問
次の$\tocichi$,$\tocni$に答えよ.

\mon[$\tocichi$] 次の$5$つの定積分を求めよ.($\tocni \ (4)$で用いる.)

$\displaystyle I_1=\int_0^\pi x \sin x \, dx,\quad I_2=\int_0^\pi x^2 \cos x \, dx,\quad I_3=\int_0^\pi \sin^2 x \, dx$

$\displaystyle I_4=\int_0^\pi x \cos x \sin x \, dx,\quad I_5=\int_0^\pi \sin^2 x \cos x \, dx$

\mon[$\tocni$] 関数$y=\sin x$のグラフを曲線$C$とする.$C$上の点$\mathrm{O}(0,\ 0)$における接線を$\ell_1$,点$\mathrm{A}(\pi,\ 0)$における接線を$\ell_2$とする.
$\ell_1$と$\ell_2$の交点を$\mathrm{B}$,$C$上の点$\mathrm{P}(t,\ \sin t) (0 \leqq t \leqq \pi)$から$\ell_1$に下ろした垂線を$\mathrm{PQ}$とする.ただし,$t=0$のときは$\mathrm{Q}=\mathrm{P}$とする.$\mathrm{OQ}=s$とおく.

\mon[$(1)$] $\angle \mathrm{OBA}$の大きさを求めよ.
\mon[$(2)$] $s$を$t$を用いて表せ.
\mon[$(3)$] 線分$\mathrm{PQ}$の長さを$t$を用いて表せ.
\mon[$(4)$] 曲線$C$と$2$直線$\ell_1$,$\ell_2$で囲まれた部分を,直線$\ell_1$の周りに$1$回転させてできる立体の体積$V$を求めよ.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。