タグ「接点」の検索結果

13ページ目:全243問中121問~130問を表示)
弘前大学 国立 弘前大学 2013年 第3問
$2$曲線$C_1:x^2+y^2=1$と$\displaystyle C_2:y=-\frac{\sqrt{3}}{3}(x-3)(x-\beta)$を考える.ただし,$\beta>3$とする.また,$C_1$上の点$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$を通る$C_1$の接線$\ell$が$C_2$にも接しているとする.次の問いに答えよ.

(1)$\ell$と$C_2$の接点の座標および$\beta$の値を求めよ.
(2)$C_1$と$\ell$および$x$軸で囲まれた部分を$S_1$とし,$C_2$と$\ell$および$x$軸で囲まれた部分を$S_2$とする.このとき,$S_1$と$S_2$の面積をそれぞれ求めよ.
香川大学 国立 香川大学 2013年 第4問
$0<p_1<p_2,\ 1<r_2$とする.中心$\mathrm{O}_1(p_1,\ 0)$,半径$1$の円$C_1$と,中心$\mathrm{O}_2(p_2,\ 0)$,半径$r_2$の円$C_2$は点$\mathrm{T}$で外接している.また円$C_1,\ C_2$はともに放物線$C:x=y^2$に接している.円$C_1$と放物線$C$との接点で第$1$象限にあるものを$\mathrm{Q}_1({q_1}^2,\ q_1)$,円$C_2$と放物線$C$との接点で第$1$象限にあるものを$\mathrm{Q}_2({q_2}^2,\ q_2)$とおくとき,次の問に答えよ.

(1)$p_1,\ p_2,\ q_1,\ q_2,\ r_2$を求めよ.
(2)放物線$C$と弧$\widehat{\mathrm{Q}_1 \mathrm{T}}$および弧$\widehat{\mathrm{Q}_2 \mathrm{T}}$で囲まれた図形を$D$とするとき,$C$,$C_1$,$C_2$の概形をかき,$D$を図示せよ.ただし,ここでいう弧とは,その中心角が$180^\circ$以下のものをいう.
(3)$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
旭川医科大学 国立 旭川医科大学 2013年 第4問
次の問いに答えよ.

(1)関数$y=x \log x-x \ (x>0)$の増減を調べ,そのグラフをかけ.
(2)$a$を正の実数とする.曲線$C:y=\log (x+1)$上の点$(t,\ \log (t+1))$における接線$\ell_t$が,曲線$C_a:y=a \log x$上の点$(s,\ a \log s)$における接線にもなっているとき,$t$と$s$の関係を$a$を含まない式で表せ.
(3)任意に与えられた$t>-1$に対して,直線$\ell_t$が曲線$C_a$の接線にもなっているような$a$が唯一つ存在すること,および$a>1$であることを示せ.
(4)直線$\ell_t$が曲線$C_a$の接線になっているとき,その接点の$x$座標を$s(t)$とかくことにする.$s(t)$を$t$の関数とみて増減を調べ,さらに$\displaystyle \lim_{t \to \infty}(s(t)-t)$を求めよ.
筑波大学 国立 筑波大学 2013年 第3問
$xyz$空間において,点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$を通る平面上にあり,正三角形$\mathrm{ABC}$に内接する円板を$D$とする.円板$D$の中心を$\mathrm{P}$,円板$D$と辺$\mathrm{AB}$の接点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$と点$\mathrm{Q}$の座標を求めよ.
(2)円板$D$が平面$z=t$と共有点をもつ$t$の範囲を求めよ.
(3)円板$D$と平面$z=t$の共通部分が線分であるとき,その線分の長さを$t$を用いて表せ.
(4)円板$D$を$z$軸のまわりに回転してできる立体の体積を求めよ.
(図は省略)
佐賀大学 国立 佐賀大学 2013年 第4問
関数$f(x)=xe^{-2x}$に関して次の問に答えよ.ただし,$e$は自然対数の底である.

(1)曲線$y=f(x)$の概形をかけ.必要ならば,$\displaystyle \lim_{x \to \infty}xe^{-2x}=0$を使ってよい.
(2)曲線$y=f(x)$の接線のうちで傾きが最小となるものを$\ell$とする.その接線$\ell$の方程式と接点$(a,\ f(a))$を求めよ.
(3)$x<a$において,接線$\ell$は曲線$y=f(x)$より常に上側にあることを証明せよ.ただし,$a$は(2)で求めたものとする.
(4)曲線$y=f(x)$,接線$\ell$,および$y$軸で囲まれた図形の面積$S$を求めよ.
九州工業大学 国立 九州工業大学 2013年 第4問
曲線$\displaystyle C_1:\frac{x^2}{4}+y^2=1 \ (x \geqq 0)$と曲線$C_2:x^2+y^2=1 \ (x \geqq 0)$がある.曲線$C_1$の点$\mathrm{P}(\sqrt{s},\ \sqrt{t}) \ (s>0,\ t>0)$における法線を$\ell$とする.次に答えよ.

(1)$s$を$t$を用いて表せ.また,直線$\ell$の方程式を$t$を用いて表せ.
(2)直線$\ell$が曲線$C_2$に接するときの点$\mathrm{P}$の座標および接点$\mathrm{Q}$の座標を求めよ.
(3)$\mathrm{P}$,$\mathrm{Q}$は(2)で求めた点とし,点$(0,\ 1)$を$\mathrm{R}$とする.曲線$C_1$,弧$\mathrm{RQ}$および線分$\mathrm{PQ}$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
琉球大学 国立 琉球大学 2013年 第2問
$xy$平面上の曲線$C$は媒介変数$\theta$を用いて
\[ x=\frac{2}{3}\sqrt{3}\cos \theta+\frac{\sqrt{6}}{3}\sin \theta,\quad y=\frac{\sqrt{3}}{3}\cos \theta-\frac{\sqrt{6}}{3}\sin \theta \quad (0 \leqq \theta \leqq \pi) \]
と表される.このとき,次の問いに答えよ.

(1)曲線$C$を表す$x$と$y$の関係式を求め,$xy$平面に図示せよ.
(2)点$(2,\ 0)$から曲線$C$に引いた接線の方程式と接点の座標を求めよ.
群馬大学 国立 群馬大学 2013年 第10問
$\alpha$を実数とし,点$(\alpha,\ 0)$を通り傾き$\alpha$の直線を$\ell(\alpha)$とおく.放物線$y=px^2+qx+r$は,$\alpha$がすべての実数を動くとき,つねに$\ell(\alpha)$と接している.

(1)$p,\ q,\ r$の値を求め,接点の座標を$\alpha$を用いて表せ.
(2)$\alpha \neq 0$のとき,この放物線と$\ell(\alpha)$および$x$軸で囲まれた部分の面積を求めよ.
長崎大学 国立 長崎大学 2013年 第1問
円$C_1:x^2-4x+y^2=0$と直線$\displaystyle \ell:y=\frac{\sqrt{3}}{3}x$がある.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,原点$\mathrm{O}$と異なるものを$\mathrm{A}$とする.点$\mathrm{A}$の座標を求めよ.さらに,原点$\mathrm{O}$を頂点とし,点$\mathrm{A}$を通る放物線$C_2$の方程式を$y=ax^2$とする.$a$の値を求めよ.
(2)直線$\ell$の傾きを$\tan \theta$と表す.そのときの$\theta$の値を求めよ.ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.
(3)円$C_1$と直線$\ell$で囲まれた図形のうち,直線$\ell$の上側にある部分の面積$S_1$を求めよ.
(4)円$C_1$と放物線$C_2$で囲まれた図形のうち,放物線$C_2$の上側にある部分の面積$S_2$を求めよ.
(5)放物線$C_2$の接線で,直線$\ell$とのなす角が$\displaystyle \frac{\pi}{4}$であるものを考える.そのすべてについて,接点の$x$座標を求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第3問
座標平面上の曲線$K$を$y=x^3-x+1$とする.

(1)点$(t,\ t^3-t+1)$における$K$の接線の方程式を$t$を用いて表せ.
(2)点$(1,\ 5)$を通る直線$\ell$が$K$と接するとき,接点の座標を求めよ.
(3)直線$\ell$と$K$で囲まれた図形の面積を求めよ.ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
スポンサーリンク

「接点」とは・・・

 まだこのタグの説明は執筆されていません。