タグ「接点」の検索結果

11ページ目:全243問中101問~110問を表示)
立教大学 私立 立教大学 2014年 第3問
$a>0$とする.座標平面上に$2$つの放物線$C_1:y=x^2-2x+2$と$\displaystyle C_2:y=-\frac{1}{2}x^2+ax-\frac{3}{2}$がある.放物線$C_1$上の点$\mathrm{P}(2,\ 2)$を通り,点$\mathrm{P}$での接線に直交する直線を$\ell$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$2$つの放物線$C_1,\ C_2$が共有点をもたないとき,$a$の値の範囲を求めよ.
(3)直線$\ell$が放物線$C_2$に接しているとき,$a$の値と接点の座標を求めよ.
(4)$a$を$(3)$で求めた値としたとき,直線$\ell$と放物線$C_1,\ C_2$および$y$軸で囲まれる部分の面積を$S$とする.$S$の値を求めよ.
上智大学 私立 上智大学 2014年 第1問
正三角形$\mathrm{ABC}$において,点$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線を$\mathrm{AD}$,点$\mathrm{B}$から辺$\mathrm{AC}$に下ろした垂線を$\mathrm{BE}$とする.$\triangle \mathrm{ABD}$の内心を$\mathrm{O}$とするとき,内接円$\mathrm{O}$の半径は$1$である.円$\mathrm{O}$と$3$辺$\mathrm{AB}$,$\mathrm{AD}$,$\mathrm{BD}$との接点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.

(1)$\mathrm{AE}=[ア]+\sqrt{[イ]}$である.

(2)$\mathrm{AF}=[ウ]+\sqrt{[エ]}$である.

(3)$\mathrm{AO}=\sqrt{[オ]}+\sqrt{[カ]}$である.ただし,$[オ]<[カ]$とする.

(4)$\displaystyle \mathrm{FG}=\frac{\sqrt{[キ]}+\sqrt{[ク]}}{[ケ]}$である.ただし,$[キ]<[ク]$とする.

(5)円$\mathrm{O}$の点$\mathrm{H}$を含まない弧$\mathrm{FG}$と線分$\mathrm{AF}$および線分$\mathrm{AG}$で囲まれた図形の面積は
\[ [コ]+\sqrt{[サ]}+\frac{[シ]}{[ス]}\pi \]
である.
上智大学 私立 上智大学 2014年 第2問
$xyz$空間において,$xy$平面に原点$\mathrm{O}(0,\ 0,\ 0)$で接し,中心が$\mathrm{C}(0,\ 0,\ 1)$であるような球面を$S$とする.点$\mathrm{P}(2 \sqrt{3},\ 0,\ 3)$に点光源をおくとき,$xy$平面上にできる$S$の影$S^\prime$を考える.

(1)点$\mathrm{P}$から球面$S$に引いた接線の一つと球面との接点を$\mathrm{A}$とする.線分$\mathrm{PA}$の長さは$\sqrt{[キ]}$である.$\angle \mathrm{CPA}=\theta$とすると,$\displaystyle \sin \theta=\frac{[ク]}{[ケ]}$である.

(2)球面$S$上で光が当たる部分と影の部分との境界は,$\displaystyle \left( \frac{\sqrt{[コ]}}{[サ]},\ [シ],\ \frac{[ス]}{[セ]} \right)$を中心とし,半径が$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$の円である.
(3)影$S^\prime$は長軸の長さが$[チ] \sqrt{[ツ]}$の楕円の内部である.
名城大学 私立 名城大学 2014年 第3問
$xy$平面上に,円$C:x^2+y^2=1$,$C$上に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$,および$C$の外に点$\displaystyle \mathrm{B} \left( \frac{3 \sqrt{5}}{5},\ -\frac{\sqrt{5}}{5} \right)$をとる.次の問に答えよ.

(1)$\mathrm{A}$における接線の方程式を求めよ.
(2)$\mathrm{B}$から$C$に引いた接線の傾きを求めよ.
(3)$\mathrm{B}$から$C$に引いた$2$本の接線の接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.直線$\mathrm{PQ}$の方程式を求めよ.
名城大学 私立 名城大学 2014年 第4問
$xy$平面上に,放物線$C_1:y=x^2-1$,$C_2:y=x^2$がある.$C_1$上を動く点$\mathrm{P}(p,\ p^2-1)$から$C_2$に$2$本の接線を引き,それらの接点を$\mathrm{Q}(\alpha,\ \alpha^2)$,$\mathrm{R}(\beta,\ \beta^2) (\alpha<\beta)$とする.さらに,$C_2$と$2$直線$\mathrm{PQ}$,$\mathrm{PR}$で囲まれる部分の面積を$S$とする.

(1)$\mathrm{P}$の座標を$\alpha,\ \beta$を用いて表せ.
(2)$S$を$\alpha,\ \beta$を用いて表せ.
(3)$S$は$\mathrm{P}$の位置によらず一定であることを示し,その値を求めよ.
松山大学 私立 松山大学 2014年 第4問
次の空所$[ア]$~$[ト]$を埋めよ.

関数$\displaystyle f(x)=x^3+\frac{1}{2}ax^2-6x-\frac{1}{2}b$がある.ただし,
\[ a=\int_0^1 f(t) \, dt \cdots\cdots ① \qquad b=\int_{-1}^1 f(t) \, dt \cdots\cdots ② \]
とする.

(1)関数$f(x)$の不定積分は
\[ \int f(t) \, dt=\frac{1}{[ア]}t^4+\frac{1}{[イ]}at^3-[ウ]t^2-\frac{1}{[エ]}bt+C \quad \text{($C$は積分定数)} \]
であり,式$①$,$②$より$a=-[オ]$,$\displaystyle b=-\frac{[カ]}{[キ]}$である.
(2)$y=f(x)$が表す曲線$A$において,$\displaystyle x=\frac{3}{2}$のときの接線$B$を$y=g(x)$とおくと,関数$f(x)$の導関数は
\[ f^\prime(x)=[ク]x^2-[ケ]x-[コ] \]
であるので,
\[ g(x)=-\frac{[サシ]}{[ス]}x-\frac{[セソ]}{[タ]} \]
である.
接点以外の,曲線$A$と接線$B$の交点は,$\displaystyle \left( -\frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$である.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2014年 第5問
$y=f(x)=x^3-4x$上の点$(a,\ a^3-4a)$で$f(x)$に接する直線がこの接点以外で交わるとする.その交点の座標を求めよ.また,その$y$座標が正となるための$a$の条件を求めよ.
西南学院大学 私立 西南学院大学 2014年 第4問
三角形$\mathrm{ABC}$に内接する円$\mathrm{O}$がある.円$\mathrm{O}$と$\mathrm{BC}$との接点を$\mathrm{H}$,円$\mathrm{O}$と$\mathrm{AC}$との接点を$\mathrm{I}$とする.$\mathrm{AB}=8$,$\mathrm{BC}=9$,$\mathrm{AC}=5$のとき,以下の問に答えよ.

(1)円$\mathrm{O}$の半径は,$\displaystyle \frac{[ノ] \sqrt{[ハヒ]}}{[フヘ]}$である.
(2)円$\mathrm{O}$の中心と$\mathrm{B}$との距離は,$\displaystyle \frac{[ホマ] \sqrt{[ミム]}}{[フヘ]}$である.
(3)$\mathrm{AI}=[メ]$である.
公立はこだて未来大学 公立 公立はこだて未来大学 2014年 第4問
$f(x)=|x^2-3x+2|$とする.曲線$y=f(x)$を$C$とし,曲線$C$上の点$\mathrm{A}(a,\ f(a))$における接線を$\ell$とする.ただし,$1<a<2$とする.以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$の共有点のうち,接点$\mathrm{A}$とは異なる$2$つの点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$で表せ.
(3)曲線$C$と接線$\ell$で囲まれた部分の面積を$S$とするとき,$S$のとりうる値の範囲を求めよ.
札幌医科大学 公立 札幌医科大学 2014年 第3問
$a$を$0<a<1$とする.座標空間の$4$点を$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\displaystyle \mathrm{B} \left( 0,\ \frac{1}{a},\ 0 \right)$,$\displaystyle \mathrm{C} \left( 0,\ 0,\ \frac{1}{1-a} \right)$とする.また,$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を頂点とする四面体に内接する球を$S$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に直交し長さが$1$のベクトルを$a$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と球$S$の接点の座標を$a$を用いて表せ.
(3)球$S$の半径を$a$を用いて表せ.
(4)球$S$の体積の最大値を求めよ.
スポンサーリンク

「接点」とは・・・

 まだこのタグの説明は執筆されていません。