タグ「手順」の検索結果

1ページ目:全16問中1問~10問を表示)
北九州市立大学 公立 北九州市立大学 2016年 第4問
四面体$\mathrm{OABC}$と点$\mathrm{P}$について,$14 \overrightarrow{\mathrm{OP}}+5 \overrightarrow{\mathrm{AP}}+9 \overrightarrow{\mathrm{BP}}+7 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}}$が成り立つとする.四面体$\mathrm{OABC}$,$\mathrm{PABC}$の体積をそれぞれ$V_1$,$V_2$とするとき,$V_1:V_2$を以下の手順で求めよ.

(1)$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(2)線分$\mathrm{BC}$を$7:9$に内分する点を$\mathrm{D}$とするとき,$\overrightarrow{\mathrm{OP}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OD}}$を用いて表せ.
(3)点$\mathrm{P}$はどのような位置にあるか説明せよ.
(4)$V_1:V_2$を求めよ.
宮城大学 公立 宮城大学 2015年 第3問
ともに目盛りのない$3 \, \ell$の容器$\mathrm{A}$と$5 \, \ell$の容器$\mathrm{B}$を一つずつ用いるとき,次の問いに答えなさい.

(1)$4 \, \ell$の水を量る手順を,次の例にならって説明しなさい.
(例)$\mathrm{A}$に$3 \, \ell$,$\mathrm{B}$に$0 \, \ell$の水が入っている状態を$\mathrm{AB}(3,\ 0)$で表す.また,はじめに$\mathrm{A}$に$3 \, \ell$の水を入れ,次に,$\mathrm{B}$に$5 \, \ell$の水を入れていくとき,
\[ \mathrm{AB}(0,\ 0) \to \mathrm{AB}(3,\ 0) \to \mathrm{AB}(3,\ 5) \]
のように表すものとする.
(2)$n \, \ell$以上の水が量れることを,数学的帰納法を用いて証明しなさい.ただし,$n$は$9$以上の自然数とする.
兵庫県立大学 公立 兵庫県立大学 2015年 第5問
\begin{mawarikomi}{45mm}{
(図は省略)
}
図に示すように,ある円の周上に$4$つの円板$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が置かれ,円の中心には円板$\mathrm{K}$が置かれている.当初$\mathrm{A}$には$\bullet$で示される小石が置かれている.この状態から,順次サイコロを振り以下の手順で小石を移動し小石の位置取りを繰り返す.

(i) 現在$\mathrm{K}$に小石がある場合は,出た目の数にかかわらず,新たな位置取りはそのまま$\mathrm{K}$とする.
(ii) 出た目の数が$1$または$2$の場合,小石を現在の場所から$\mathrm{K}$に移動する.
(iii) 出た目の数が$3$の場合,小石を現在の場所から反時計回り,すなわち,$\mathrm{A} \to \mathrm{B} \to \mathrm{C} \to \mathrm{D} \to \mathrm{A}$の向きで,隣接する円板に移動する.
\mon[$\tokeishi$] 出た目の数が$4$以上の場合,小石を現在の場所から時計回り,すなわち,$\mathrm{A} \to \mathrm{D} \to \mathrm{C} \to \mathrm{B} \to \mathrm{A}$の向きで,隣接する円板に移動する.

\end{mawarikomi}
次の問に答えなさい.

(1)$n$回目の位置取り後,小石が$\mathrm{K}$にある確率を$k_n$と表す.$k_n$を求めなさい.
(2)偶数回位置取りを行った場合,小石は$\mathrm{K}$になければ$\mathrm{A}$または$\mathrm{C}$にあることを示しなさい.
(3)$n$回目の位置取り後,小石が$\mathrm{A}$にある確率を$a_n$と表す.$a_2$を求めなさい.また,$a_{2n+2}$を$a_{2n}$および$k_{2n}$を用いて表しなさい.
(4)$a_n$を求めなさい.
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
高知大学 国立 高知大学 2013年 第1問
座標平面において,点$(0,\ 5)$を通り,直線$y=x$と点$(a,\ a)$で接する円$C$について,次の問いに答えよ.

(1)点$(0,\ 5)$と直線$y=x$と点$(a,\ a)$がかかれているとき,コンパスと目盛りのない定規を用いて,円$C$を作図する手順を説明せよ.
(2)円$C$の方程式を求めよ.
(3)円$C$の中心の座標を$(s,\ t)$とするとき,$\displaystyle x=\frac{\sqrt{2}}{2}(s+t)$,$\displaystyle y=\frac{\sqrt{2}}{2}(-s+t)$とおく.このとき,$a$の値が変化するときの点$(x,\ y)$の軌跡を座標平面に図示せよ.
北海道医療大学 私立 北海道医療大学 2013年 第2問
ある薬品$30 \mathrm{g}$を純水$70 \mathrm{g}$に溶かした溶液が入ったビーカー$\mathrm{A}$と純水$100 \mathrm{g}$が入ったビーカー$\mathrm{B}$がある.今,次のような手順を繰り返して行うとする.

\mon[$①$] ビーカー$\mathrm{B}$の溶液のうち$50 \mathrm{g}$をビーカー$\mathrm{A}$に入れ,その後ビーカー$\mathrm{A}$の溶液をよくかき混ぜる.
\mon[$②$] できあがったビーカー$\mathrm{A}$の溶液のうち$50 \mathrm{g}$をビーカー$\mathrm{B}$に戻し,その後ビーカー$\mathrm{B}$の溶液をよくかき混ぜる.


(1)この手順を$1$回行った後のビーカー$\mathrm{A}$の溶液に含まれる薬品の重さを$a_1$,ビーカー$\mathrm{B}$の溶液に含まれる薬品の重さを$b_1$とする.$a_1,\ b_1$の値を求めよ.
(2)この手順を$n$回($n \geqq 2$)行った後のビーカー$\mathrm{A}$の溶液に含まれる薬品の重さを$a_n$,ビーカー$\mathrm{B}$の溶液に含まれる薬品の重さを$b_n$とする.$a_n$を$a_{n-1},\ b_{n-1}$で表せ.また,$b_n$を$a_{n-1},\ b_{n-1}$で表せ.
(3)$c_n=a_n+b_n$と置くとき,$c_n$の値を求めよ.
(4)$d_n=a_n-b_n$と置くとき,$d_n$を$n$の式で表せ.
(5)ビーカー$\mathrm{A}$の溶液に含まれる薬品とビーカー$\mathrm{B}$の溶液に含まれる薬品の重さの差が$0.1 \mathrm{g}$以下になるのは,この手順を何回繰り返した後か.
(6)$a_n,\ b_n$を$n$の式で表せ.
会津大学 公立 会津大学 2013年 第3問
$n$を自然数とする.行列$A=\left( \begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array} \right)$について,次の手順で$A^n$を求める.このとき,以下の空欄をうめよ.


(1)行列$P=\left( \begin{array}{cc}
1 & 0 \\
a & b
\end{array} \right)$が$P^{-1} \left( \begin{array}{cc}
2 & 1 \\
0 & 2
\end{array} \right) P=A$を満たすとき,$a=[イ]$,$b=[ロ]$である.

(2)$\left( \begin{array}{cc}
2 & 1 \\
0 & 2
\end{array} \right)^n=\left( \begin{array}{cc}
x_n & \displaystyle\frac{n}{2}x_n \\
0 & x_n
\end{array} \right)$と表せる.このとき,$x_n=[ハ]$である.

(3)$A^n=[ニ]$である.
横浜市立大学 公立 横浜市立大学 2013年 第2問
$n$個のボールと,$1$から$n$までの番号がふられた$n$個の空の箱がある.また,$1$から$n$の番号が書かれた$n$枚のカードが袋の中に入っている.いま,以下の手順に従いボールを箱の中に入れていくことを考える.

手順$1$ \quad 袋からカードを$1$枚無作為に取り出して,手順$2$に進む.
手順$2$ \quad 手順$1$で取り出したカードに書かれている番号の箱が,
\begin{itemize}
空ならば,そこにボールを$1$つ入れて,手順$3$へ進む.
空でなければ,カードを袋に戻さず手元に置き,手順$1$に戻る.
\end{itemize}
手順$3$ \quad 手元のすべてのカードを袋に戻す.この時点で,
\begin{itemize}
すべての箱にボールが入っていれば終了する.
空の箱が$1$つでもあれば,手順$1$に戻る.
\end{itemize}

また,$1 \leqq k \leqq n$を満たす自然数$k$について,$k-1$個目のボールを箱に入れ終わった状態(ただし,$k=1$のときは,はじめの状態とする)の後に,
\begin{itemize}
次のボール,すなわち$k$個目のボールを箱に入れるまでにちょうど$i$枚のカードを袋から取り出す確率を$P_k(i)$とし,
$i$枚のカードを袋から取り出してもまだ次のボールを箱に入れることができない確率を$Q_k(i)$とする.ただし,$Q_k(0)=1$とする.
\end{itemize}
このとき,以下の問いに答えよ.

(1)$n=4$のとき$P_3(1)$,$P_3(2)$,$Q_3(2)$をそれぞれ求めよ.
(2)$Q_k(i)$を$P_k(i+1)$,$P_k(i+2)$,$\cdots$,$P_k(k)$を用いて表せ.ただし,$0 \leqq i \leqq k-1$とする.
(3)$k-1$個目のボールを箱に入れてから$k$個目のボールを箱に入れるまでに袋から取り出すカードの枚数の期待値$E_k$は$Q_k(0)+Q_k(1)+\cdots +Q_k(k-1)$であることを示せ.
(4)不等式
\[ E_k \leqq \frac{n}{n-k+1} \]
が成り立つことを示せ.
(5)不等式
\[ E_1+E_2+\cdots +E_n \leqq n+n \log n \]
が成り立つことを示せ.
スポンサーリンク

「手順」とは・・・

 まだこのタグの説明は執筆されていません。