タグ「成立」の検索結果

6ページ目:全112問中51問~60問を表示)
山口大学 国立 山口大学 2013年 第1問
$x>0,\ x \neq 1$を定義域とする次の$5$つの関数を考える.
\[ \frac{x^2+1}{2},\quad \frac{2x^2}{x^2+1},\quad x,\quad \left( \frac{x+1}{2} \right)^2,\quad \frac{x^2-1}{2 \log x} \]
このとき,次の問いに答えなさい.

(1)上の$5$つの関数の間に$[1]<[2]<[3]<[4]<[5]$の不等式が成立するとすれば,$[1]$から$[5]$にはどの関数が入るか.$x=2$を代入することによりそれらを決定しなさい.ただし,$\log 2=0.693 \cdots$とする.
(2)$[4]<[5]$の部分の不等式を証明しなさい.
(3)$[2]<[3]$の部分の不等式を証明しなさい.
京都教育大学 国立 京都教育大学 2013年 第1問
$\triangle \mathrm{ABC}$において頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に向かい合う辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A,\ B,\ C$で表すものとする.$\triangle \mathrm{ABC}$の面積を$S$とし,$\displaystyle s=\frac{a+b+c}{2}$とおくと
\[ S=\sqrt{s(s-a)(s-b)(s-c)} \]
が成立することを余弦定理と公式
\[ S=\frac{1}{2}bc \sin A \]
を用いて証明せよ.
香川大学 国立 香川大学 2013年 第3問
$x$が$3<x<6$の範囲にあるとき,次の問に答えよ.

(1)この範囲ではつねに$\displaystyle \frac{1}{x-3}+\frac{4}{6-x} \geqq 3$が成立することを示せ.

(2)この範囲でつねに$\displaystyle \frac{5}{x-3}+\frac{4}{6-x} \geqq a$が成立するような$a$の最大値を求めよ.
福岡大学 私立 福岡大学 2013年 第1問
$x$に関する方程式$3 \log_x 5+2 \log_5 x=7$を解くと$x=[ ]$である.また,すべての実数$x$に対して,不等式$x^2 \log_23+2x \log_2a+\log_23 \geqq x^2+2x+1$が成立するとき,$a$のとりうる値の範囲は$[ ]$である.
西南学院大学 私立 西南学院大学 2013年 第1問
以下の問に答えよ.

(1)不等式$x^2-2x-30<0$を満たす整数$x$は,全部で$[アイ]$個ある.
(2)有理数$m$と$n$について,$\displaystyle (2 \sqrt{2}+3)m+(5 \sqrt{2}-1)n=\frac{1}{3 \sqrt{2}-2}$が成立するとき,$\displaystyle m=\frac{[ウエ]}{[オカキ]}$,$\displaystyle n=\frac{[ク]}{[オカキ]}$である.
(3)$2$乗して$7+24i$となる複素数は,$\pm ([ケ]+[コ]i)$である.
吉備国際大学 私立 吉備国際大学 2013年 第2問
$a,\ b$は互いに素な整数とする.

(1)もし$a^2=2b^2 \cdots\cdots①$が成立するなら,$a$は偶数であることを証明せよ.
(2)$①$の$b$も偶数であることを証明せよ.
(3)$①$が成立することはないということを証明せよ.
杏林大学 私立 杏林大学 2013年 第1問
座標平面上の点$(x,\ y)$に対し,
\[ y=2 \sqrt{-x^2+4x-3}+1 \cdots\cdots① \]
が成立している.

(1)$①$の定義域は$[ア] \leqq x \leqq [イ]$,値域は$[ウ] \leqq y \leqq [エ]$である.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を$([オ],\ [カ] \pm \sqrt{[キ]})$にとると,$①$のグラフ上の任意の点$\mathrm{P}$に対し,常に$\mathrm{PA}+\mathrm{PB}=[ク]$が成り立つ.
(3)直線$y=x+k$が$①$のグラフと共有点を持つような定数$k$の範囲は
\[ [ケコ] \leqq k \leqq [サシ]+\sqrt{[ス]} \]
である.
(4)不等式$x-1 \leqq 2 \sqrt{-x^2+4x-3}+1$の解は
\[ [セ] \leqq x \leqq [ソ]+\frac{[タ]}{[チ]} \sqrt{[ツ]} \]
である.
杏林大学 私立 杏林大学 2013年 第4問
$[オ]$,$[タ]$,$[チ]$,$[ト]$,$[ナ]$の解答は対応する解答群の中から最も適当なものを$1$つ選べ.

条件$a_1=0$,$a_2=0$と漸化式
\[ a_{n+2}-3a_{n+1}+2a_n=2^n \log_2 \frac{(n+1)^2}{n} \cdots\cdots (*) \]
$(n=1,\ 2,\ 3,\ \cdots)$で定められる数列の一般項を,以下の要領で求めてみよう.

(1)漸化式$(*)$より,ベクトル$\overrightarrow{b_n}=\left( \begin{array}{c}
a_{n+1} \\
a_n
\end{array} \right)$に対して
\[ \overrightarrow{b_{n+1}}=A \overrightarrow{b_n}+\left( \begin{array}{c}
2^n \log_2 \displaystyle\frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
が成立する.ただし,行列$A$は$A=\left( \begin{array}{cc}
[ア] & [イウ] \\
[エ] & 0
\end{array} \right)$である.
この式の両辺に,$A$の逆行列$A^{-1}$を左から$n$回かけると
\[ (A^{-1})^n \overrightarrow{b_{n+1}}=(A^{-1})^{n-1} \overrightarrow{b_n}+(A^{-1})^n \left( \begin{array}{c}
\displaystyle 2^n \log_2 \frac{(n+1)^2}{n} \\
0
\end{array} \right) \]
となり,$(A^{-1})^{n-1} \overrightarrow{b_n}$の階差数列がわかる.これより,$2$以上の整数$n$に対し,
\[ (A^{-1})^{n-1} \overrightarrow{b_{n}}=\overrightarrow{b_1}+\sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right) \cdots\cdots (**) \]
を得る.
(2)$(**)$式の右辺第一項は$\overrightarrow{b_1}=\left( \begin{array}{c}
[カ] \\
[キ]
\end{array} \right)$であり,$\displaystyle A^{-1}=\frac{1}{2} \left( \begin{array}{cc}
[ク] & [ケ] \\
[コサ] & [シ]
\end{array} \right)$は行列$P=\left( \begin{array}{cc}
2 & 1 \\
1 & 1
\end{array} \right)$を用いて
\[ A^{-1}=P \left( \begin{array}{cc}
\displaystyle\frac{[ス]}{[セ]} & 0 \\
0 & [ソ]
\end{array} \right) P^{-1} \]
と表されるので,$(**)$式右辺の和の項について,次式が成立する.
\[ \sum_{k=1}^{[オ]} (A^{-1})^k \left( \begin{array}{c}
\displaystyle 2^k \log_2 \frac{(k+1)^2}{k} \\
0
\end{array} \right)=P \left( \begin{array}{c}
\log_2 [タ] \\
-2^n \log_2 [チ]
\end{array} \right) \]
(3)$(2)$の結果と,行列$A$が同じ$P$を用いて
\[ A=P \left( \begin{array}{cc}
[ツ] & 0 \\
0 & [テ]
\end{array} \right) P^{-1} \]
と表わされることに注意すると,$(**)$式の両辺に行列$A$を左から$(n-1)$回かけて得られる$\overrightarrow{b_n}$から,一般項$a_n$は
\[ a_n=2^{[ト]} \log_2 [ナ] \]
($n=2,\ 3,\ 4,\ \cdots$)となる.

$[オ]$,$[ト]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan n+1 & \nagamarushi 1-n \\
\nagamarugo -n & \nagamaruroku -n-1 \phantom{AA} & \nagamarushichi \displaystyle\frac{n(n+1)}{2} \phantom{AA} & \nagamaruhachi n^2-1 \\
\nagamarukyu \displaystyle\frac{1}{6}n(n+1)(2n+1) & & &
\end{array} \]
$[タ]$,$[チ]$,$[ナ]$の解答群
\[ \begin{array}{llll}
\nagamaruichi n-1 & \nagamaruni n & \nagamarusan \displaystyle\frac{n+1}{n} \phantom{AA} & \nagamarushi \displaystyle\frac{4n-6}{n} \\
\nagamarugo n^2-4n+5 & \nagamaruroku (n-1)! \phantom{AA} & \nagamarushichi n! \phantom{AA} & \nagamaruhachi n!-1 \\
\nagamarukyu (n-1) \times n! \phantom{AA} & \nagamarurei n \times n! & &
\end{array} \]
沖縄国際大学 私立 沖縄国際大学 2013年 第3問
以下の各問いに答えなさい.

(1)以下の図において$\overline{A \cap B}$の部分を塗りつぶしなさい.
(図は省略)
(2)$A=\{2x \;|\; 1 \leqq x \leqq 10,\ x \text{は自然数} \}$,$B=\{3y \;|\; 1 \leqq y \leqq 10,\ y \text{は自然数} \}$のとき,$A \cap B$の要素をすべて答えなさい.
(3)命題「$x^2-1=0 \Longrightarrow x=1$または$x=-1$」の対偶を答えなさい.
(4)次の表中$①$~$⑤$( \quad )内に,命題「$p \Longrightarrow q$」が成立するように,次の(ア)~(ケ)から適切なものを \underline{すべて} 選び記号で答えなさい.

\begin{tabular}{|c|c|}
\hline
$p$ & $q$ \\ \hline
犬である. & $①$( \qquad ) \\ \hline
宜野湾市である. & $②$( \qquad ) \\ \hline
$x=5$ & $③$( \qquad ) \\ \hline
$④$ ( \qquad ) & ほ乳類である. \\ \hline
$⑤$ ( \qquad ) & $x=-2$または$x=3$ \\ \hline
\end{tabular}

\begin{screen}
(ア) $x$は偶数である. \quad (イ) $x$は$2$の倍数である. \quad (ウ) $0<x<10$ \\
(エ) 動物である. \quad (オ) 沖縄県である. \quad (カ) 人間である. \\
(キ) $|x| \geqq 5$ \quad (ク) $x^2-x-6=0$ \quad (ケ) $x^2-x+6=0$
\end{screen}
(5)$x+y=2$ならば$x \leqq 1$または$y \leqq 1$であることを背理法によって証明しなさい.
神戸大学 国立 神戸大学 2012年 第3問
以下の問いに答えよ.

(1)正の実数$x,\ y$に対して
\[ \frac{y}{x}+\frac{x}{y} \geqq 2 \]
が成り立つことを示し,等号が成立するための条件を求めよ.
(2)$n$を自然数とする.$n$個の正の実数$a_1,\ \cdots,\ a_n$に対して
\[ (a_1 +\cdots+a_n) \left( \frac{1}{a_1}+\cdots+\frac{1}{a_n} \right) \geqq n^2 \]
が成り立つことを示し,等号が成立するための条件を求めよ.
スポンサーリンク

「成立」とは・・・

 まだこのタグの説明は執筆されていません。