タグ「成分」の検索結果

6ページ目:全83問中51問~60問を表示)
青森公立大学 公立 青森公立大学 2012年 第2問
平面上のベクトル$\overrightarrow{x},\ \overrightarrow{y}$は大きさが等しく,互いに直交している.$\overrightarrow{a} = (7,\ 9)$とするとき,$2\overrightarrow{x}+\overrightarrow{y}=\overrightarrow{a}$が成り立つ.次の問いに答えよ.

(1)内積$\overrightarrow{a}\cdot \overrightarrow{x}$を内積$\overrightarrow{x}\cdot \overrightarrow{x}$を用いて表せ.
(2)内積$\overrightarrow{a}\cdot \overrightarrow{x}$,および内積$\overrightarrow{x}\cdot \overrightarrow{x}$の値を求めよ.
(3)ベクトル$\overrightarrow{x},\ \overrightarrow{y}$の成分をすべて求めよ.
首都大学東京 公立 首都大学東京 2012年 第2問
原点O$(0,\ 0,\ 0)$と点A$(1,\ 1,\ 1)$を通る直線を$\ell$とし,3点B$(1,\ 0,\ 0)$,C$(0,\ 2,\ 0)$,D$(0,\ 0,\ 3)$を通る平面を$\alpha$とする.以下の問いに答えなさい.

(1)ベクトル$\overrightarrow{a}$は平面$\alpha$に垂直で,成分がすべて正であり,長さが7になるものとする.このとき,$\overrightarrow{a}$を成分で表しなさい.
(2)$\triangle$BCDの面積を求めなさい.
(3)Oから平面$\alpha$へ引いた垂線と平面$\alpha$との交点をHとする.線分OHの長さを求めなさい.
(4)Pは座標がすべて正である直線$\ell$上の点とする.Pを中心とする半径7の球面が点Qで平面$\alpha$に接するとき,P,Qの座標を求めなさい.
奈良県立医科大学 公立 奈良県立医科大学 2012年 第3問
各成分が$0$以下の整数からなる$2$行$2$列の行列
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
で,$A^2+A=E$を満たすものをすべて求めよ.(ただし,$E$は単位行列を表す.)
京都府立大学 公立 京都府立大学 2012年 第4問
$n$を自然数とする.整数を成分にもつ行列
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right),\quad B=\left( \begin{array}{cc}
3 & x \\
y & z
\end{array} \right),\quad E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right) \]
は$AB=BA$,$B^2-3B+2E=O$を満たすとする.ただし$x \neq y$とする.以下の問いに答えよ.

(1)$a>b>c>d$,$bc>0$かつ$A^2=18E$のとき,$a,\ b,\ c,\ d$の値をすべて求めよ.
(2)$B^n=p_nB+q_nE$で定まる数列$\{p_n\}$,$\{q_n\}$の一般項をそれぞれ求めよ.
(3)$a=3$,$b=2$,$c=-4$,$d=-3$のとき,$x,\ y,\ z$の値および$(AB)^{2n}$を求めよ.
名古屋大学 国立 名古屋大学 2011年 第2問
$A_0 = \biggl( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \biggr)$とする.整数$n \geqq 1$に対して,次の試行により行列$A_{n-1}$から行列$A_n$を定める.

「数字の組$(1,\ 1)$,$(1,\ 2)$,$(2,\ 1)$,$(2,\ 2)$を1つずつ書いた4枚の札が入っている袋から1枚を取り出し,その札に書かれている数字の組が$(i,\ i)$のとき,$A_{n-1}$の$(i,\ j)$成分に1を加えた行列を$A_n$とする.」

この試行を$n$回$(n=2,\ 3,\ 4,\ \cdots)$くり返した後に,$A_0,\ A_1,\ \cdots,\ A_{n-1}$が逆行列をもたず$A_n$は逆行列をもつ確率を$p_n$とする.

(1)$p_2,\ p_3$を求めよ.
(2)$n-1$回$(n=2,\ 3,\ 4,\ \cdots)$の試行をくり返した後に,$A_{n-1}$の第1行の成分がいずれも正で第2行の成分はいずれも0である確率$q_{n-1}$を求めよ.
(3)$p_n \ (n=2,\ 3,\ 4,\ \cdots)$を求めよ.
筑波大学 国立 筑波大学 2011年 第5問
実数を成分とする行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$を考える.座標平面上の2点P$(x,\ y)$,Q$(u,\ v)$について等式
\[ \biggl( \begin{array}{c}
u \\
v
\end{array} \biggr) = A \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr) \]
が成り立つとき,行列$A$により点Pは点Qに移るという. \\
\quad 点$(1,\ 3)$は行列$A$により点$(10,\ 10)$に移り,さらに等式
\[ A^2-7A+10E=O \]
が成り立つものとする.ただし,$E=\biggl( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \biggr),\ O=\biggl( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \biggr)$である.このとき,以下の問いに答えよ.

(1)行列$A$により点$(10,\ 10)$が移る点の座標を求めよ.
(2)実数$a,\ b,\ c,\ d$の値を求めよ.
(3)次の条件$(*)$を満たす直線$\ell$の方程式を求めよ. \\
$(*)$ \ 直線$\ell$上のすべての点が行列$A$により$\ell$上の点に移る.
富山大学 国立 富山大学 2011年 第3問
実数を成分とする行列$A=\biggl( \begin{array}{rr}
a & -b \\
b & c
\end{array} \biggr)$は$A^2-A+E=O$をみたすとする.ただし,$E$は2次の単位行列,$O$は2次の零行列を表し,$b>0$とする.このとき,次の問いに答えよ.

(1)$b$と$c$を,それぞれ$a$を用いて表せ.
(2)2つのベクトル$A \biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr)$と$A \biggl( \begin{array}{c}
1 \\
-1
\end{array} \biggr)$が垂直であるとき,行列$A$を求めよ.
(3)$A$を(2)で求めた行列とする.1個のさいころを2回投げて,出た目を順に$\ell,\ m$とする.このときベクトル$P_0,\ P_1,\ P_2,\ P_3$を次のように定める.
\begin{itemize}
$P_0=\biggl( \begin{array}{c}
0 \\
0
\end{array} \biggr), P_1=\biggl( \begin{array}{c}
1 \\
0
\end{array} \biggr)$
$P_2=P_1+A^{\ell}(P_1-P_0)$
$P_3=P_2+A^m(P_2-P_1)$
\end{itemize}
このとき,$P_3=\biggl( \begin{array}{c}
0 \\
0
\end{array} \biggr)$となる確率を求めよ.
富山大学 国立 富山大学 2011年 第3問
実数を成分とする行列$A=\left( \begin{array}{rr}
a & -b \\
b & c
\end{array} \right)$は$A^2-A+E=O$をみたすとする.ただし,$E$は2次の単位行列,$O$は2次の零行列を表し,$b>0$とする.このとき,次の問いに答えよ.

(1)$b$と$c$を,それぞれ$a$を用いて表せ.
(2)2つのベクトル$A \left( \begin{array}{c}
1 \\
1
\end{array} \right)$と$A \left( \begin{array}{c}
1 \\
-1
\end{array} \right)$が垂直であるとき,行列$A$を求めよ.
(3)$A$を(2)で求めた行列とする.1個のさいころを$k+1$回投げて,出た目を順に$m_1,\ m_2,\ \cdots,\ m_{k+1}$とする.このときベクトル$P_0,\ P_1,\ P_2,\ \cdots,\ P_{k+2}$を次のように定める.
\begin{itemize}
$P_0=\left( \begin{array}{c}
0 \\
0
\end{array} \right), P_1=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$
$P_{n+1}=P_n+A^{m_n}(P_n-P_{n-1}) \quad (n=1,\ 2,\ \cdots,\ k+1)$
\end{itemize}
さらに,ベクトル$P_1,\ \cdots,\ P_{k+1}$がすべて異なり$P_{k+2}=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$となる確率を$q_k$とする.このとき,$q_1,\ q_2,\ q_3$を,それぞれ求めよ.
山口大学 国立 山口大学 2011年 第2問
座標平面上の自然数を成分とする点$(m,\ n)$に,有理数$\displaystyle \frac{n}{m}$を対応させる.下図のように,点$(1,\ 1)$から矢印の順番に従って,対応する有理数を並べ,次のような数列をつくる.\\
$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{3}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{4}{3},\ \frac{4}{2},\ \frac{4}{1},\ \cdots$\\
このとき,次の問いに答えなさい.

(1)有理数$\displaystyle \frac{11}{8}$が初めて現れるのは第何項かを求めなさい.
(2)第160項を求めなさい.
(3)第1000項までに,値が2となる項の総数を求めなさい.
(図は省略)
山形大学 国立 山形大学 2011年 第1問
座標空間内に$2$点$\mathrm{A}(0,\ 2,\ 1)$,$\mathrm{B}(2,\ -1,\ 2)$があり,点$\mathrm{P}(x,\ y,\ 0)$は$\overrightarrow{\mathrm{PA}} \perp \overrightarrow{\mathrm{PB}}$を満たしながら動くものとする.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{PA}}$と$\overrightarrow{\mathrm{PB}}$を成分で表せ.
(2)$x$と$y$が満たすべき関係式を求めよ.
(3)$x$と$y$が$(2)$の関係式を満たすとき,$2x-3y$の値の範囲を求めよ.
(4)三角形$\mathrm{PAB}$の面積の最大値を求めよ.また,そのときの$\angle \mathrm{PAB}$の大きさを求めよ.
スポンサーリンク

「成分」とは・・・

 まだこのタグの説明は執筆されていません。