タグ「恒等式」の検索結果

3ページ目:全28問中21問~30問を表示)
大阪大学 国立 大阪大学 2011年 第4問
$a,\ b,\ c$を正の定数とし,$x$の関数$f(x) = x^3 +ax^2 +bx+c$を考える.以下,定数は全て実数とする.

(1)定数$p,\ q$に対し,次をみたす定数$r$が存在することを示せ.
\[ x \geqq 1 \quad \text{ならば} \quad |px+q| \leqq rx \]
(2)恒等式$(\alpha-\beta)(\alpha^2+\alpha\beta+\beta^2)=\alpha^3-\beta^3$を用いて,次をみたす定数$k,\ l$が存在することを示せ.
\[ x \geqq 1 \quad \text{ならば} \quad \left|\sqrt[3]{f(x)}-x-k \right| \leqq \frac{l}{x} \]
(3)すべての自然数$n$に対して,$\sqrt[3]{f(n)}$が自然数であるとする.このとき関数$f(x)$は,自然数の定数$m$を用いて$f(x)=(x+m)^3$と表されることを示せ.
防衛大学校 国立 防衛大学校 2011年 第5問
次の問に答えよ.

(1)定積分$\displaystyle I=\int_0^{\frac{\pi}{2}} \cos 2t \cos 4t \, dt$の値を求めよ.
(2)次の等式が$t$についての恒等式となるように,定数$a,\ b,\ c,\ d$の値を定めよ.
\[ \sin^4 t \cos^2 t=a+b \cos 2t+c \cos 4t+d \cos 2t \cos 4t \]
(3)$x=\cos^3 t$とおいて,定積分$\displaystyle J=\int_0^1 (1-x^{\frac{2}{3}})^{\frac{3}{2}} \, dx$の値を求めよ.
北海道科学大学 私立 北海道科学大学 2011年 第16問
$a,\ b$を定数とする.等式
\[ \frac{x+1}{(2x-1)(4x+1)}=\frac{a}{2x-1}+\frac{b}{4x+1} \]
が$x$についての恒等式になるとき,$a=[ ]$,$b=[ ]$である.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)円$x^2+y^2=30$上の点$\mathrm{P}(5,\ \sqrt{5})$における接線の方程式は$[$1$]$である.
(2)$\displaystyle \frac{5x+3}{x^2+7x-18}=\frac{a}{x-2}+\frac{b}{x+9}$が$x$についての恒等式であるとき,$a=[$2$]$,$b=[$3$]$である.
(3)$\displaystyle \sin (\alpha+\beta)=\frac{3}{4},\ \sin (\alpha-\beta)=\frac{1}{4}$であるとき,$\sin \alpha \cos \beta$の値は$[$4$]$,$\cos \alpha \sin \beta$の値は$[$5$]$,$\sin^2 \alpha+\cos^2 \beta$の値は$[$6$]$である.
(4)$7$人が円形のテーブルに着席する方法は$[$7$]$通りある.
(5)さいころ$3$個を同時に投げるとき,そのうち同じ目が出るさいころが$2$個だけである確率は,$[$8$]$である.また,さいころ$4$個を同時に投げるとき,少なくとも$2$個のさいころが同じ目である確率は,$[$9$]$である.
(6)連立方程式
\[ \left\{ \begin{array}{l}
\sqrt{x}+2 \log_{10}y=3 \\
x-3 \log_{10}y^2=1 \phantom{e^{[ ]}}
\end{array} \right. \]
を満たす$x,\ y$の値は$x=[$10$]$,$y=[$11$]$である.
福岡大学 私立 福岡大学 2011年 第1問
次の$[ ]$をうめよ.

(1)等式$4x^2=a(x-1)(x-2)+b(x-1)+4$が$x$についての恒等式となるように定数$a,\ b$の組を定めると,$(a,\ b)=[ ]$である.また,このとき$2$次方程式$4x^2+ax+b=0$の$2$つの解を$\alpha,\ \beta$とすると,$\displaystyle \frac{\beta^2}{\alpha}+\frac{\alpha^2}{\beta}$の値は$[ ]$である.
(2)$0 \leqq x \leqq \pi$のとき,方程式$2 \sin^2 x+5 \cos x+1=0$を解くと,$x=[ ]$である.また,$0 \leqq y \leqq 2\pi$とするとき,不等式$\cos 2y+\sin y \geqq 0$を満たす$y$の値の範囲は$[ ]$である.
(3)$1$から$7$までの数字が$1$つずつ書かれた$7$枚のカードがある.この中から$3$枚のカードを同時にとりだす.このとき,カードの数字の和が奇数となる確率は$[ ]$である.また,カードの数字の和が奇数のときは,その$3$つの数の最大の値を得点とし,カードの数字の和が偶数のときには一律に$5$点を得点とするゲームを考えると,このゲームの期待値は$[ ]$点である.
東京大学 国立 東京大学 2010年 第2問
2次関数$f(x)=x^2+ax+b$に対して
\[ f(x+1)=c\int_0^1(3x^2+4xt)f^{\, \prime}(t)\,dt \]
が$x$についての恒等式になるような定数$a$,$b$,$c$の組をすべて求めよ.
福岡教育大学 国立 福岡教育大学 2010年 第2問
次の問いに答えよ.

(1)恒等式$\displaystyle \frac{1}{2}(x+y+z)\{(x-y)^2+(y-z)^2+(z-x)^2\}=x^3+y^3+z^3-3xyz$が成り立つことを示せ.
(2)$a \geqq 0,\ b \geqq 0,\ c \geqq 0$のとき,$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$が成り立つことを示せ.また,等号が成り立つのは$a=b=c$のときであることを示せ.
(3)一辺の長さがそれぞれ$a,\ b,\ c$の三角形の面積は$\sqrt{s(s-a)(s-b)(s-c)}$で与えられることが知られている.ただし,$\displaystyle s=\frac{a+b+c}{2}$とする.三辺の長さの和が$2s \ (s>0)$であるような三角形の面積は$\displaystyle \frac{s^2}{3 \sqrt{3}}$以下であることを示せ.また,面積が$\displaystyle \frac{s^2}{3 \sqrt{3}}$となるのは,三角形が正三角形のときであることを示せ.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)分数式$\displaystyle \frac{x^3+2x^2+4x-7}{x^2+2x-3}$を約分して既約分数にすると$[ア]$である.また,等式$ax(x-1)+b(x-1)(x-2)+c(x-3)=3x^2+2x+1$が$x$についての恒等式となるように$a,\ b,\ c$の値を定めると,$(a,\ b,\ c)=[イ]$である.
(2)$3^{30}$の桁数を求めると$[ウ]$である.また,$\displaystyle \left( \frac{1}{9} \right)^{40}$を小数で表すと小数第$n$位に初めて$0$でない数が現れ,$n=[エ]$である.ただし,$\log_{10}3=0.4771$とする.
(3)$2$次関数$f(x)=ax^2+bx+c$は$x=1$で最小値$-1$をとる.$f(x)=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^4+\beta^4$を$a$で表すと$\alpha^4+\beta^4=[オ]$である.また,$\alpha^4+\beta^4>6$を満たす$a$の値の範囲を求めると$[カ]$である.
(4)$a \geqq 0$とする.$2$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(a,\ 3)$からの距離の比が$2:1$である点$\mathrm{P}$の描く図形の方程式は$[キ]$である.また,この図形が直線$y=x+2$と$2$つの共有点$\mathrm{C}$,$\mathrm{D}$をもち,線分$\mathrm{CD}$の長さが$2 \sqrt{2}$であるとき,$a$の値を求めると$a=[ク]$である.
スポンサーリンク

「恒等式」とは・・・

 まだこのタグの説明は執筆されていません。