「必要十分条件」について
タグ「必要十分条件」の検索結果
(4ページ目:全130問中31問~40問を表示) 私立 上智大学 2015年 第3問
ある工場では製品$\mathrm{X}$,$\mathrm{Y}$を生産している.それらを生産するには,原料$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が必要である.$\mathrm{X}$を$1 \, \mathrm{kg}$生産するためには,$\mathrm{A}$が$1 \, \mathrm{kg}$,$\mathrm{B}$が$4 \, \mathrm{kg}$,$\mathrm{C}$が$1 \, \mathrm{kg}$必要である.$\mathrm{Y}$を$1 \, \mathrm{kg}$生産するためには,$\mathrm{A}$が$3 \, \mathrm{kg}$,$\mathrm{B}$が$3 \, \mathrm{kg}$,$\mathrm{C}$が$2 \, \mathrm{kg}$必要である.原料の在庫はそれぞれ,$\mathrm{A}$が$23 \, \mathrm{kg}$,$\mathrm{B}$が$47 \, \mathrm{kg}$,$\mathrm{C}$が$c \, \mathrm{kg}$である.また,$\mathrm{X}$を生産すると$1 \, \mathrm{kg}$あたり$p$万円,$\mathrm{Y}$を生産すると$1 \, \mathrm{kg}$あたり$q$万円の利益がある.ただし,$c>0$,$p>0$,$q>0$とする.以下,在庫にある原料のみを用いて生産を行うものとする.
(1)$c=17$,$p=2$,$q=5$のとき,$\mathrm{X}$を$[ヌ] \, \mathrm{kg}$,$\mathrm{Y}$を$[ネ] \, \mathrm{kg}$生産すれば,最大の利益を得る.
(2)$c=17$のとき,最大の利益を得る$\mathrm{X}$と$\mathrm{Y}$の生産量の組がただ一つに定まるための必要十分条件を$\displaystyle \frac{p}{q}$の値を用いて表すと,
$\displaystyle 0<\frac{p}{q}<\frac{[ノ]}{[ハ]} \quad \text{または} \quad \frac{[ヒ]}{[フ]}<\frac{p}{q}<\frac{[ヘ]}{[ホ]}$
$\displaystyle \text{または} \quad \frac{[マ]}{[ミ]}<\frac{p}{q}<\frac{[ム]}{[メ]} \quad \text{または} \quad \frac{[モ]}{[ヤ]}<\frac{p}{q}$
である.ただし,$\displaystyle 0<\frac{[ヒ]}{[フ]}<\frac{[マ]}{[ミ]}<\frac{[モ]}{[ヤ]}$とする.
(3)$\mathrm{X}$と$\mathrm{Y}$の生産量にかかわらず原料$\mathrm{C}$が余るための必要十分条件を$c$の値を用いて表すと,$c>[ユ]$である.
(1)$c=17$,$p=2$,$q=5$のとき,$\mathrm{X}$を$[ヌ] \, \mathrm{kg}$,$\mathrm{Y}$を$[ネ] \, \mathrm{kg}$生産すれば,最大の利益を得る.
(2)$c=17$のとき,最大の利益を得る$\mathrm{X}$と$\mathrm{Y}$の生産量の組がただ一つに定まるための必要十分条件を$\displaystyle \frac{p}{q}$の値を用いて表すと,
$\displaystyle 0<\frac{p}{q}<\frac{[ノ]}{[ハ]} \quad \text{または} \quad \frac{[ヒ]}{[フ]}<\frac{p}{q}<\frac{[ヘ]}{[ホ]}$
$\displaystyle \text{または} \quad \frac{[マ]}{[ミ]}<\frac{p}{q}<\frac{[ム]}{[メ]} \quad \text{または} \quad \frac{[モ]}{[ヤ]}<\frac{p}{q}$
である.ただし,$\displaystyle 0<\frac{[ヒ]}{[フ]}<\frac{[マ]}{[ミ]}<\frac{[モ]}{[ヤ]}$とする.
(3)$\mathrm{X}$と$\mathrm{Y}$の生産量にかかわらず原料$\mathrm{C}$が余るための必要十分条件を$c$の値を用いて表すと,$c>[ユ]$である.
私立 上智大学 2015年 第3問
実数からなる集合$A,\ B,\ C$を以下のように定義する.
$\displaystyle A=\left\{ x \ \biggl| \ \sin \frac{\pi}{2}x>-\frac{1}{7}x \right\}$
$B=\{x \ | \ 0<x<b\}$
$C=\{x \ | \ x \geqq c\}$
ただし,$b,\ c$は正の実数とする.
(1)$-1 [え] A$である.また,$5 [お] A$である.
\begin{screen}
$[え]$,$[お]$の選択肢:
\[ \mathrm{(a)} \ \in \quad \mathrm{(b)} \ \notin \quad \mathrm{(c)} \ \ni \quad \mathrm{(d)} \ \notni \quad \mathrm{(e)} \ = \quad \mathrm{(f)} \ \subset \quad \mathrm{(g)} \ \supset \]
\end{screen}
(2)$B \cap C$が空集合であるための必要十分条件は$[か]$である.
\begin{screen}
$[か]$の選択肢:
\begin{tabular}{llll}
$\mathrm{(a)} \ b=c$ \phantom{AA} & $\mathrm{(b)} \ b<c$ \phantom{AA} & $\mathrm{(c)} \ b \leqq c$ \phantom{AA} & $\mathrm{(d)} \ b>c$ \phantom{AA} \\
$\mathrm{(e)} \ b \geqq c$ & $\mathrm{(f)} \ b \leqq 1$ & $\mathrm{(g)} \ b \leqq 1 \text{かつ} c \geqq 1$ &
\end{tabular}
\end{screen}
(3)$A \supset B$となる$b$のうち,整数で最大のものは$[タ]$である.また,$A \supset C$となる$c$のうち,整数で最小のものは$[チ]$である.
(4)$S$は実数からなる集合とする.「集合$S$が連結である」とは,「$S$のどの$2$つの要素$x,\ y$に対しても,
条件:実数$z$が$x<z<y$を満たすならば$z \in S$
が成り立つ」ことである.
$A \cap B$が連結であるような$b$のうち,整数で最大のものは$[ツ]$である.また,$A \cap C$が連結であるような$c$のうち,整数で最小のものは$[テ]$である.
$\displaystyle A=\left\{ x \ \biggl| \ \sin \frac{\pi}{2}x>-\frac{1}{7}x \right\}$
$B=\{x \ | \ 0<x<b\}$
$C=\{x \ | \ x \geqq c\}$
ただし,$b,\ c$は正の実数とする.
(1)$-1 [え] A$である.また,$5 [お] A$である.
\begin{screen}
$[え]$,$[お]$の選択肢:
\[ \mathrm{(a)} \ \in \quad \mathrm{(b)} \ \notin \quad \mathrm{(c)} \ \ni \quad \mathrm{(d)} \ \notni \quad \mathrm{(e)} \ = \quad \mathrm{(f)} \ \subset \quad \mathrm{(g)} \ \supset \]
\end{screen}
(2)$B \cap C$が空集合であるための必要十分条件は$[か]$である.
\begin{screen}
$[か]$の選択肢:
\begin{tabular}{llll}
$\mathrm{(a)} \ b=c$ \phantom{AA} & $\mathrm{(b)} \ b<c$ \phantom{AA} & $\mathrm{(c)} \ b \leqq c$ \phantom{AA} & $\mathrm{(d)} \ b>c$ \phantom{AA} \\
$\mathrm{(e)} \ b \geqq c$ & $\mathrm{(f)} \ b \leqq 1$ & $\mathrm{(g)} \ b \leqq 1 \text{かつ} c \geqq 1$ &
\end{tabular}
\end{screen}
(3)$A \supset B$となる$b$のうち,整数で最大のものは$[タ]$である.また,$A \supset C$となる$c$のうち,整数で最小のものは$[チ]$である.
(4)$S$は実数からなる集合とする.「集合$S$が連結である」とは,「$S$のどの$2$つの要素$x,\ y$に対しても,
条件:実数$z$が$x<z<y$を満たすならば$z \in S$
が成り立つ」ことである.
$A \cap B$が連結であるような$b$のうち,整数で最大のものは$[ツ]$である.また,$A \cap C$が連結であるような$c$のうち,整数で最小のものは$[テ]$である.
私立 慶應義塾大学 2015年 第4問
企業$\mathrm{X}$が$n$個の新製品を同時に開発しており,各新製品の開発に成功する確率は$\displaystyle \frac{1}{9}$である.すべての開発の結果が出た後に企業$\mathrm{X}$が存続できるための必要十分条件は,$n$個のうち$1$個以上の新製品の開発に成功していることである.ただし,各新製品の開発は独立な試行であるとする.企業$\mathrm{X}$が$n$個の新製品すべての開発に失敗する確率を$p_n$,また企業$\mathrm{X}$が存続できる確率を$q_n$とする.以下では,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
(1)$p_n,\ q_n$をそれぞれ$n$を用いて表せ.
(2)$q_n \geqq 0.9$を満たす最小の自然数$n$を求めよ.
(3)$\displaystyle \frac{k}{1000}<q_{50}<\frac{k+1}{1000}$を満たす自然数$k$を求めよ.
(1)$p_n,\ q_n$をそれぞれ$n$を用いて表せ.
(2)$q_n \geqq 0.9$を満たす最小の自然数$n$を求めよ.
(3)$\displaystyle \frac{k}{1000}<q_{50}<\frac{k+1}{1000}$を満たす自然数$k$を求めよ.
私立 上智大学 2015年 第2問
$N$を$2$以上の整数とする.整数$a,\ b$に対し,演算$\oplus$を
\[ a \oplus b=\biggl( (a+b) \text{を}N \text{で割ったときの余り} \biggr) \]
と定める.例えば,$N=2$のとき,
\[ 0 \oplus 0=0,\quad 0 \oplus 1=1,\quad 1 \oplus 1=0,\quad 1 \oplus 3=0 \]
である.
(1)次の条件によって定められる数列$\{a_n\}$を考える.
\[ a_1=1,\quad a_{n+1}=a_n \oplus (n+1) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(i) $N=4$のとき,$a_3=[ヌ]$である.
(ii) $N \geqq 4$とする.
$N$が偶数のとき,$\displaystyle a_{N+1}=\frac{[ネ]}{[ノ]}N+[ハ]$,
$N$が奇数のとき,$\displaystyle a_{N+1}=[ヒ]$である.
(iii) $N$が偶数のとき,$\displaystyle a_{N-1}=\frac{[フ]}{[ヘ]}N+[ホ]$,
$N$が奇数のとき,$\displaystyle a_{N-1}=[マ]$である.
(2)$N$を偶数とし,$N=2M$と表す.ただし,$M$は自然数である.次の条件によって定められる数列$\{b_n\}$を考える.
\[ b_1=1,\quad b_{n+1}=b_n \oplus (2n+1) \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$b_M=0$となる必要十分条件は,$N$が$[ミ]$の倍数となることである.
$N$が$[ミ]$の倍数でない偶数のとき,$\displaystyle b_M=\frac{[ム]}{[メ]}N$である.
\[ a \oplus b=\biggl( (a+b) \text{を}N \text{で割ったときの余り} \biggr) \]
と定める.例えば,$N=2$のとき,
\[ 0 \oplus 0=0,\quad 0 \oplus 1=1,\quad 1 \oplus 1=0,\quad 1 \oplus 3=0 \]
である.
(1)次の条件によって定められる数列$\{a_n\}$を考える.
\[ a_1=1,\quad a_{n+1}=a_n \oplus (n+1) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(i) $N=4$のとき,$a_3=[ヌ]$である.
(ii) $N \geqq 4$とする.
$N$が偶数のとき,$\displaystyle a_{N+1}=\frac{[ネ]}{[ノ]}N+[ハ]$,
$N$が奇数のとき,$\displaystyle a_{N+1}=[ヒ]$である.
(iii) $N$が偶数のとき,$\displaystyle a_{N-1}=\frac{[フ]}{[ヘ]}N+[ホ]$,
$N$が奇数のとき,$\displaystyle a_{N-1}=[マ]$である.
(2)$N$を偶数とし,$N=2M$と表す.ただし,$M$は自然数である.次の条件によって定められる数列$\{b_n\}$を考える.
\[ b_1=1,\quad b_{n+1}=b_n \oplus (2n+1) \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$b_M=0$となる必要十分条件は,$N$が$[ミ]$の倍数となることである.
$N$が$[ミ]$の倍数でない偶数のとき,$\displaystyle b_M=\frac{[ム]}{[メ]}N$である.
私立 上智大学 2015年 第3問
$a$を実数とするとき,座標平面において,円$C:x^2+y^2=20$および円$C_a:x^2+y^2+a(x+3y-10)=20$を考える.
(1)どのような$a$の値に対しても,$C_a$は$2$点$\mathrm{P} \left( [モ],\ [ヤ] \right)$,$\mathrm{Q} \left( [ユ],\ [ヨ] \right)$を必ず通る.ただし,$[モ]<[ユ]$とする.
(2)$C_a$の中心の座標は$\displaystyle \left( \frac{[ラ]}{[リ]}a,\ \frac{[ル]}{[レ]}a \right)$であり,$C_a$の半径を$r$とすると,$\displaystyle r^2=\frac{[ロ]}{[ワ]}(a^2+[ヲ]a+[ン])$である.
(3)$C_a$の半径$r$が最小となるのは,$a=[あ]$のときである.
(4)$C$の周および内部の領域を$D$,$C_a$の周および内部の領域を$D_a$とする.$a=[あ]$のとき$D$と$D_a$の共通部分の面積は$[い]\pi+[う]$である.
(5)$x$座標と$y$座標がともに整数の点を格子点とよぶ.$D$と$D_a$の共通部分に含まれる格子点の数を$n(a)$で表す.
(i) $a=-4$のとき,$n(a)=[え]$である.
(ii) $n(a)$が最小値$[お]$をとるための必要十分条件は,$a<[か]$である.
(iii) $12 \leqq n(a)<14$となる必要十分条件は,$[き] \leqq a<[く]$である.
(1)どのような$a$の値に対しても,$C_a$は$2$点$\mathrm{P} \left( [モ],\ [ヤ] \right)$,$\mathrm{Q} \left( [ユ],\ [ヨ] \right)$を必ず通る.ただし,$[モ]<[ユ]$とする.
(2)$C_a$の中心の座標は$\displaystyle \left( \frac{[ラ]}{[リ]}a,\ \frac{[ル]}{[レ]}a \right)$であり,$C_a$の半径を$r$とすると,$\displaystyle r^2=\frac{[ロ]}{[ワ]}(a^2+[ヲ]a+[ン])$である.
(3)$C_a$の半径$r$が最小となるのは,$a=[あ]$のときである.
(4)$C$の周および内部の領域を$D$,$C_a$の周および内部の領域を$D_a$とする.$a=[あ]$のとき$D$と$D_a$の共通部分の面積は$[い]\pi+[う]$である.
(5)$x$座標と$y$座標がともに整数の点を格子点とよぶ.$D$と$D_a$の共通部分に含まれる格子点の数を$n(a)$で表す.
(i) $a=-4$のとき,$n(a)=[え]$である.
(ii) $n(a)$が最小値$[お]$をとるための必要十分条件は,$a<[か]$である.
(iii) $12 \leqq n(a)<14$となる必要十分条件は,$[き] \leqq a<[く]$である.
私立 上智大学 2015年 第2問
赤いカードと青いカードが$10$枚ずつあり,それぞれ$0$から$9$までの数字が$1$つずつ書かれている.これら$20$枚から数枚を選ぶときの選び方に関する次の条件$P$を考える.
$P$:選んだカードのうち,赤いカードに書かれた数字はすべて偶数である.
(1)$P$であるための必要十分条件を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
(2)$P$の否定を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
選択肢:
\mon[$\mathrm{A}$] 選んだカードのうち,青いカードに書かれた数字はすべて奇数である.
\mon[$\mathrm{B}$] 選んだカードのうち,奇数が書かれたカードはすべて青い.
\mon[$\mathrm{C}$] 選んだカードのうち,偶数が書かれたカードはすべて赤い.
\mon[$\mathrm{D}$] 選んだカードのうちに,偶数が書かれた青いカードが存在する.
\mon[$\mathrm{E}$] 選んだカードのうちに,奇数が書かれた赤いカードが存在する.
\mon[$\mathrm{F}$] 選んだカードのうちに,偶数が書かれた青いカードは存在しない.
\mon[$\mathrm{G}$] 選んだカードのうちに,奇数が書かれた赤いカードは存在しない.
$P$:選んだカードのうち,赤いカードに書かれた数字はすべて偶数である.
(1)$P$であるための必要十分条件を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
(2)$P$の否定を下の選択肢からすべて選べ.ただし,選択肢に正解がない場合は,$Z$をマークせよ.
選択肢:
\mon[$\mathrm{A}$] 選んだカードのうち,青いカードに書かれた数字はすべて奇数である.
\mon[$\mathrm{B}$] 選んだカードのうち,奇数が書かれたカードはすべて青い.
\mon[$\mathrm{C}$] 選んだカードのうち,偶数が書かれたカードはすべて赤い.
\mon[$\mathrm{D}$] 選んだカードのうちに,偶数が書かれた青いカードが存在する.
\mon[$\mathrm{E}$] 選んだカードのうちに,奇数が書かれた赤いカードが存在する.
\mon[$\mathrm{F}$] 選んだカードのうちに,偶数が書かれた青いカードは存在しない.
\mon[$\mathrm{G}$] 選んだカードのうちに,奇数が書かれた赤いカードは存在しない.
私立 昭和大学 2015年 第5問
$x,\ y,\ z$を実数とするとき,次の$(1)$~$(6)$までの文中の空欄に当てはまるものを$(ア)$~$(エ)$から一つ選べ.
(1)$xyz=0$は$xy=0$の$[ ]$.
(2)$x+y+z=0$は$x+y=0$の$[ ]$.
(3)$x(y^2+1)=0$は$x=0$の$[ ]$.
(4)$x^2+y^2=0$は$|x-y|=x+y$の$[ ]$.
(5)$xy<0$は$|x+y|>x+y$の$[ ]$.
(6)$(x^2+y^2)(x^2+z^2)=0$は$x=0$の$[ ]$.
\mon[(ア)] 必要条件であるが十分条件でない
\mon[(イ)] 十分条件であるが必要条件でない
\mon[(ウ)] 必要十分条件である
\mon[(エ)] 必要条件でも十分条件でもない
(1)$xyz=0$は$xy=0$の$[ ]$.
(2)$x+y+z=0$は$x+y=0$の$[ ]$.
(3)$x(y^2+1)=0$は$x=0$の$[ ]$.
(4)$x^2+y^2=0$は$|x-y|=x+y$の$[ ]$.
(5)$xy<0$は$|x+y|>x+y$の$[ ]$.
(6)$(x^2+y^2)(x^2+z^2)=0$は$x=0$の$[ ]$.
\mon[(ア)] 必要条件であるが十分条件でない
\mon[(イ)] 十分条件であるが必要条件でない
\mon[(ウ)] 必要十分条件である
\mon[(エ)] 必要条件でも十分条件でもない
私立 東京理科大学 2015年 第1問
次の文章中の$[ア]$から$[ヨ]$までに当てはまる数字$0$~$9$を求めよ.
(1)実数$a$に対し,$2$つの$2$次関数
$f(x)=x^2-2a^2x-a^4-2a^2-8$
$g(x)=-x^2+2(a^2-4)x-3a^4-2a^3-16$
を考える.
(i) すべての実数$x$に対して$g(x)<f(x)$が成り立つための必要十分条件は
\[ a>-[ア] \quad \text{かつ} \quad a \neq [イ] \]
である.
(ii) $g(x)$の最大値は$-[ウ]a^4-[エ]a^3-[オ]a^2$である.
(iii) 次の条件$(*)$を満たす実数$b$がただ$1$つ存在するとする.
$(*)$ \quad 「すべての実数$x$に対して \ $g(x) \leqq b \leqq f(x)$ \ が成り立つ.」
このとき,
\[ a=-[カ] \quad \text{または} \quad a=[キ] \]
であり,$a=-[カ]$のときは$b=-[ク][ケ]$,$a=[キ]$のときは$b=-[コ][サ]$である.
(2)次の条件で定められる数列$\{a_n\}$,$\{b_n\}$を考える.
\[ a_1=1,\quad b_1=-2,\quad \left\{ \begin{array}{lcl}
a_{n+1} &=& 8a_n+b_n \\
b_{n+1} &=& -25a_n-2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき
\[ [シ]a_{n+1}+b_{n+1}=[ス]([シ]a_n+b_n) \]
であるので,
\[ b_n={[セ]}^n-[ソ]a_n \]
である.これにより
\[ \frac{a_{n+1}}{{[タ]}^n}=\frac{a_n}{{[タ]}^{n-1}}+1 \]
となる.したがって
\[ a_n=n \cdot {[チ]}^{n-\mkakko{ツ}} \]
となる.
(3)平面上に,$\triangle \mathrm{ABC}$とその内部の点$\mathrm{O}$をとったとき,
$\mathrm{OA}=1+\sqrt{3}$
$\mathrm{OB}=\sqrt{3}$
$\mathrm{OC}=\sqrt{2}$
$\sqrt{3} \overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}+3 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$
となっていた.
このとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{-[テ]-\sqrt{[ト]}}{[ナ]}$であるので
\[ \angle \mathrm{AOB}={[ニ][ヌ][ネ]}^\circ \]
である.同様に$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=-[ノ]-\sqrt{[ハ]}$から
\[ \angle \mathrm{AOC}={[ヒ][フ][ヘ]}^\circ \]
である.したがって,
\[ \angle \mathrm{BOC}={[ホ][マ][ミ]}^\circ \]
となる.また,
\[ \sin {[ホ][マ][ミ]}^\circ=\frac{\sqrt{[ム]} \left( [メ]+\sqrt{[モ]} \right)}{4} \]
である.したがって,$\triangle \mathrm{ABC}$の面積は$\displaystyle [ヤ]+\frac{[ユ] \sqrt{[ヨ]}}{2}$である.
(1)実数$a$に対し,$2$つの$2$次関数
$f(x)=x^2-2a^2x-a^4-2a^2-8$
$g(x)=-x^2+2(a^2-4)x-3a^4-2a^3-16$
を考える.
(i) すべての実数$x$に対して$g(x)<f(x)$が成り立つための必要十分条件は
\[ a>-[ア] \quad \text{かつ} \quad a \neq [イ] \]
である.
(ii) $g(x)$の最大値は$-[ウ]a^4-[エ]a^3-[オ]a^2$である.
(iii) 次の条件$(*)$を満たす実数$b$がただ$1$つ存在するとする.
$(*)$ \quad 「すべての実数$x$に対して \ $g(x) \leqq b \leqq f(x)$ \ が成り立つ.」
このとき,
\[ a=-[カ] \quad \text{または} \quad a=[キ] \]
であり,$a=-[カ]$のときは$b=-[ク][ケ]$,$a=[キ]$のときは$b=-[コ][サ]$である.
(2)次の条件で定められる数列$\{a_n\}$,$\{b_n\}$を考える.
\[ a_1=1,\quad b_1=-2,\quad \left\{ \begin{array}{lcl}
a_{n+1} &=& 8a_n+b_n \\
b_{n+1} &=& -25a_n-2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき
\[ [シ]a_{n+1}+b_{n+1}=[ス]([シ]a_n+b_n) \]
であるので,
\[ b_n={[セ]}^n-[ソ]a_n \]
である.これにより
\[ \frac{a_{n+1}}{{[タ]}^n}=\frac{a_n}{{[タ]}^{n-1}}+1 \]
となる.したがって
\[ a_n=n \cdot {[チ]}^{n-\mkakko{ツ}} \]
となる.
(3)平面上に,$\triangle \mathrm{ABC}$とその内部の点$\mathrm{O}$をとったとき,
$\mathrm{OA}=1+\sqrt{3}$
$\mathrm{OB}=\sqrt{3}$
$\mathrm{OC}=\sqrt{2}$
$\sqrt{3} \overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}+3 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$
となっていた.
このとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{-[テ]-\sqrt{[ト]}}{[ナ]}$であるので
\[ \angle \mathrm{AOB}={[ニ][ヌ][ネ]}^\circ \]
である.同様に$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=-[ノ]-\sqrt{[ハ]}$から
\[ \angle \mathrm{AOC}={[ヒ][フ][ヘ]}^\circ \]
である.したがって,
\[ \angle \mathrm{BOC}={[ホ][マ][ミ]}^\circ \]
となる.また,
\[ \sin {[ホ][マ][ミ]}^\circ=\frac{\sqrt{[ム]} \left( [メ]+\sqrt{[モ]} \right)}{4} \]
である.したがって,$\triangle \mathrm{ABC}$の面積は$\displaystyle [ヤ]+\frac{[ユ] \sqrt{[ヨ]}}{2}$である.
私立 東京理科大学 2015年 第3問
座標平面上の放物線$\displaystyle C_1:y=2x^2+2x+\frac{1}{2}$と$\displaystyle C_2:y=-2x^2+2x+\frac{3}{2}$に対して次の問いに答えよ.なお,必要なら \ \tbox{\rule[-0.43em]{0pt}{1.6em}\hspace{0.33em} $1$\hspace{0.57em}} $(1)$の結果を使ってもよい.
(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
私立 早稲田大学 2015年 第3問
平面上に長さ$1$のベクトル$\overrightarrow{n}$がある.また,$a$は$a>1$をみたす定数とする.平面上のベクトル$\overrightarrow{x}$に対して,ベクトル$\overrightarrow{y}$を
\[ \overrightarrow{y}=\overrightarrow{x}-a(\overrightarrow{x} \cdot \overrightarrow{n}) \overrightarrow{n} \]
により定める.ただし,$\overrightarrow{x} \cdot \overrightarrow{n}$はベクトルの内積を意味し,$a(\overrightarrow{x} \cdot \overrightarrow{n})$はその$a$倍の実数を表している.
(1)すべてのベクトル$\overrightarrow{x}$に対して$|\overrightarrow{x}|=|\overrightarrow{y}|$が成り立つための必要十分条件は,$a=2$であることを示せ.
(2)$\overrightarrow{x} \neq \overrightarrow{\mathrm{0}}$とする.$\overrightarrow{x}$と$\overrightarrow{n}$のなす角を$\theta$とし,$\overrightarrow{y}$と$\overrightarrow{n}$のなす角を$\phi$とする.このとき,$a$と$\cos \theta$を用いて$\cos \phi$を表せ.
\[ \overrightarrow{y}=\overrightarrow{x}-a(\overrightarrow{x} \cdot \overrightarrow{n}) \overrightarrow{n} \]
により定める.ただし,$\overrightarrow{x} \cdot \overrightarrow{n}$はベクトルの内積を意味し,$a(\overrightarrow{x} \cdot \overrightarrow{n})$はその$a$倍の実数を表している.
(1)すべてのベクトル$\overrightarrow{x}$に対して$|\overrightarrow{x}|=|\overrightarrow{y}|$が成り立つための必要十分条件は,$a=2$であることを示せ.
(2)$\overrightarrow{x} \neq \overrightarrow{\mathrm{0}}$とする.$\overrightarrow{x}$と$\overrightarrow{n}$のなす角を$\theta$とし,$\overrightarrow{y}$と$\overrightarrow{n}$のなす角を$\phi$とする.このとき,$a$と$\cos \theta$を用いて$\cos \phi$を表せ.