タグ「必要十分条件」の検索結果

1ページ目:全130問中1問~10問を表示)
静岡大学 国立 静岡大学 2016年 第2問
$a,\ b$を実数とする.$3$次関数$f(x)=2x^3-3(a+1)x^2+6ax+b$について次の各問に答えよ.

(1)関数$f(x)$が極値をもつための$a$の条件を求めよ.
(2)方程式$f(x)=0$が相異なる$3$つの正の実数解をもつための必要十分条件を$a,\ b$を用いて表し,この条件を満たす点$(a,\ b)$の全体を座標平面上に図示せよ.
(3)方程式$f(x)=0$が$2$つの相異なる正の実数解と$1$つの負の実数解をもつための必要十分条件を$a,\ b$を用いて表し,この条件を満たす点$(a,\ b)$の全体を座標平面上に図示せよ.
東京海洋大学 国立 東京海洋大学 2016年 第4問
$\triangle \mathrm{ABC}$に対し$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{BC}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{CA}}$として
\[ \overrightarrow{p}=|\overrightarrow{a|} \overrightarrow{b}+|\overrightarrow{b|} \overrightarrow{c}+|\overrightarrow{c|} \overrightarrow{a} \]
によってベクトル$\overrightarrow{p}$を定めるとき,次の問に答えよ.

(1)$\overrightarrow{p}=\overrightarrow{\mathrm{0}}$は$\triangle \mathrm{ABC}$が正三角形であるための必要十分条件であることを証明せよ.
(2)$\overrightarrow{p}=\overrightarrow{a}$かつ$|\overrightarrow{p|}=4$のとき,$\cos \angle \mathrm{ABC}$の値を求めよ.
広島大学 国立 広島大学 2016年 第5問
$n$を$2$以上の自然数とする.次の問いに答えよ.

(1)変量$x$のデータの値が$x_1,\ x_2,\ \cdots,\ x_n$であるとし,
\[ f(a)=\frac{1}{n} \sum_{k=1}^n (x_k-a)^2 \]
とする.$f(a)$を最小にする$a$は$x_1,\ x_2,\ \cdots,\ x_n$の平均値で,そのときの最小値は$x_1,\ x_2,\ \cdots,\ x_n$の分散であることを示せ.
(2)$c$を定数として,変量$y,\ z$の$k$番目のデータの値が

$y_k=k\phantom{c} \quad (k=1,\ 2,\ \cdots,\ n)$
$z_k=ck \quad (k=1,\ 2,\ \cdots,\ n)$

であるとする.このとき$y_1,\ y_2,\ \cdots,\ y_n$の分散が$z_1,\ z_2,\ \cdots,\ z_n$の分散より大きくなるための$c$の必要十分条件を求めよ.
(3)変量$x$のデータの値が$x_1,\ x_2,\ \cdots,\ x_n$であるとし,その平均値を$\overline{x}$とする.新たにデータを得たとし,その値を$x_{n+1}$とする.$x_1,\ x_2,\ \cdots,\ x_n,\ x_{n+1}$の平均値を$x_{n+1},\ \overline{x}$および$n$を用いて表せ.
(4)次の$40$個のデータの平均値,分散,中央値を計算すると,それぞれ,ちょうど$40,\ 670,\ 35$であった.

\begin{tabular}{|rrrrrrrrrr|}
\hline
$120$ & $10$ & $60$ & $70$ & $30$ & $20$ & $20$ & $30$ & $20$ & $60$ \\
$40$ & $50$ & $40$ & $10$ & $30$ & $40$ & $40$ & $30$ & $20$ & $70$ \\
$100$ & $20$ & $20$ & $40$ & $40$ & $60$ & $70$ & $20$ & $50$ & $10$ \\
$30$ & $10$ & $50$ & $80$ & $10$ & $30$ & $70$ & $10$ & $60$ & $10$ \\ \hline
\end{tabular}


新たにデータを得たとし,その値が$40$であった.このとき,$41$個のすべてのデータの平均値,分散,中央値を求めよ.ただし,得られた値が整数でない場合は,小数第$1$位を四捨五入せよ.
千葉大学 国立 千葉大学 2016年 第3問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第4問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
徳島大学 国立 徳島大学 2016年 第3問
整式$P(x)$が条件「$x$が整数ならば,$P(x)$の値は整数となる」を満たすとき,$P(x)$を整数値整式という.また,$a,\ b,\ c,\ d$を定数とし,$f_1(x)=x$,$\displaystyle f_2(x)=\frac{1}{2}x(x-1)$,$\displaystyle f_3(x)=\frac{1}{6}x(x-1)(x-2)$とする.

(1)$P(x)=ax^2+bx+c$が整数値整式であるための必要十分条件は,次の条件$(\mathrm{A})$であることを示せ.

\mon[$(\mathrm{A})$] $P(x)$は整数$m_0,\ m_1,\ m_2$を用いて$m_0+m_1f_1(x)+m_2f_2(x)$という形に表せる.

(2)$P(x)=ax^3+bx^2+cx+d$が整数値整式であるための必要十分条件は,次の条件$(\mathrm{B})$であることを示せ.

\mon[$(\mathrm{B})$] $P(x)$は整数$m_0,\ m_1,\ m_2,\ m_3$を用いて$m_0+m_1f_1(x)+m_2f_2(x)+m_3f_3(x)$という形に表せる.
九州工業大学 国立 九州工業大学 2016年 第2問
$s>0$,$t>0$とする.正の数からなる$2$つの数列$\{a_n\}$,$\{b_n\}$は初項と第$2$項が$a_1=b_1=s$,$a_2=b_2=t$であり,すべての自然数$n$に対して
\[ a_{n+2}=\frac{a_{n+1}+a_n}{2},\quad b_{n+2}=\sqrt{b_{n+1}b_n} \]
をみたすとする.次に答えよ.

(1)$a_3,\ b_3,\ a_4,\ b_4$を$s,\ t$を用いて表せ.
(2)自然数$n$に対して,$c_n=a_{n+1}-a_n$とおく.数列$\{c_n\}$は等比数列であることを示し,一般項を求めよ.さらに,数列$\{a_n\}$の一般項を求めよ.
(3)自然数$n$に対して,$d_n=\log b_n$とおく.数列$\{d_n\}$の一般項を求めよ.さらに,数列$\{b_n\}$の一般項を$s$の累乗と$t$の累乗を用いて表せ.ただし,対数は自然対数とする.
(4)$\displaystyle \lim_{n \to \infty}a_n$と$\displaystyle \lim_{n \to \infty}b_n$を求めよ.
(5)$t=s$は$\displaystyle \lim_{n \to \infty}a_n=\lim_{n \to \infty}b_n$であるための必要十分条件であることを示せ.
スポンサーリンク

「必要十分条件」とは・・・

 まだこのタグの説明は執筆されていません。