タグ「微分」の検索結果

6ページ目:全64問中51問~60問を表示)
山梨大学 国立 山梨大学 2011年 第2問
実数全体で定義された関数$F(x)$が次の条件$①$と$②$の両方を満たすとき「$F(x)$は性質$(\mathrm{P})$を持つ」ということにする.

$①$ すべての実数$x$について$F(x)>0$である.
$②$ $F(x)$は何度でも微分が可能で$\displaystyle \frac{d^2}{dx^2}\log F(x)=\frac{1}{\{F(x)\}^2}$を満たす.


(1)$y=f(x)$が性質$(\mathrm{P})$を持つとき$y^{\prime\prime}y-(y^\prime)^2=1$,$y^{\prime\prime\prime}y-y^{\prime\prime}y^\prime=0$となること,および$\displaystyle \frac{y^{\prime\prime}}{y}$は正の定数であることを示せ.
(2)$y=f(x)$は性質$(\mathrm{P})$を持つとする.$\displaystyle \frac{y^{\prime\prime}}{y}=k^2$($k$は正の定数)とおくとき,$k^2y^2-(y^\prime)^2=1$であることを示し,さらに$ky-y^\prime>0$および$ky+y^\prime>0$が成り立つことを示せ.
(3)$c$を実数とする.(2)のとき,関数$\displaystyle kf(c)y+\frac{1}{k}f^\prime(c)y^\prime$も性質$(\mathrm{P})$を持つことを証明せよ.ただし$①$を示すために
\[ kf(c)y+\frac{1}{k}f^\prime(c)y^\prime=f(c)(ky \mp y^\prime) \pm \frac{1}{k}y^\prime (kf(c) \pm f^\prime(c)) \quad (\text{複号同順}) \]
を利用してもよい.
藤田保健衛生大学 私立 藤田保健衛生大学 2011年 第4問
次の問いに答えよ.

(1)$\displaystyle m(x)=\frac{m_0}{\sqrt{1-\displaystyle\frac{x}{c^2}}}$とする.ただし$m_0,\ c$は正の定数である.また$c^2$より十分小さい正の定数$\varepsilon$に対して$0<x<\varepsilon$とする.

(i) $m^\prime(x)=[ ]$である.
(ii) $m(x)-m_0$を平均値の定理を用いて表すと$[$*$]$である.ただし$*$を書き表わす際,新たに必要となる実数があれば$k$を用い,$k$が満たすべき条件も明記せよ.
(iii) $\varepsilon \to 0$とすると$*$の値は$[ ]$に近づく.

(2)$a,\ b$を正の実数とするとき,積分$\displaystyle \int_0^1 \frac{1}{\{ax+b(1-x)\}^2} \, dx$の値は$[ ]$である.またこの値を$a$について微分すると,$[ ]$となる.
中央大学 私立 中央大学 2011年 第1問
次の各問いに答えよ.

(1)$xy=100$,$x>y$をみたす自然数$x,\ y$の組み合わせは何通りあるか.
(2)次の値を求めよ.
\[ \sum_{k=1}^{10} (2k^2-3k+5) \]
(3)$k$が定数のとき,$y=x^2-2kx+2k^2+3k-2$は放物線を表す.定数$k$をいろいろ変化させるとき,放物線の頂点はどのような曲線上を動いていくか.
(4)半径が$2t+1$の球の体積を$V(t)$とする.$V(t)$を$t$で微分した導関数を求めよ.
(5)$\log_{10}x=0.8$,$\log_{10}y=0.3$のとき,$\log_{10}x^2y^3$の値を求めよ.
(6)$1$枚の硬貨を$5$回投げたとき,表が$3$回出る確率を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第2問
$f(x)=e^{-x}\cos x$とする.

(1)$e^{-x}\sin x-e^{-x}\cos x$を微分せよ.
(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} f(x) \, dx$を求めよ.
(3)自然数$n$に対して,
\[ S_n=\frac{1}{n}\left\{ f \left( \frac{\pi}{2n} \right)+f \left( \frac{2\pi}{2n} \right)+f \left( \frac{3\pi}{2n} \right)+\cdots + f \left( \frac{n\pi}{2n} \right) \right\} \]
とおく.次の式が成り立つことを示せ.
\[ S_n<\frac{2}{\pi} \int_0^{\frac{\pi}{2}} f(x) \, dx < S_n + \frac{1}{n} \]
(4)$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
富山大学 国立 富山大学 2010年 第3問
$\displaystyle f(x)=(1+x)^{\frac{1}{x}} \ (x>0)$とするとき,次の問いに答えよ.

(1)$\log f(x)$を微分することによって,$f(x)$の導関数を求めよ.
(2)$0<x_1<x_2$をみたす実数$x_1,\ x_2$に対して,$f(x_1)>f(x_2)$であることを証明せよ.
(3)$\displaystyle \left( \frac{101}{100} \right)^{101}$と$\displaystyle \left( \frac{100}{99} \right)^{99}$の大小を比較せよ.
富山大学 国立 富山大学 2010年 第1問
$\displaystyle f(x)=(1+x)^{\frac{1}{x}} \ (x>0)$とするとき,次の問いに答えよ.

(1)$\log f(x)$を微分することによって,$f(x)$の導関数を求めよ.
(2)$0<x_1<x_2$をみたす実数$x_1,\ x_2$に対して,$f(x_1)>f(x_2)$であることを証明せよ.
(3)$\displaystyle \left( \frac{101}{100} \right)^{101}$と$\displaystyle \left( \frac{100}{99} \right)^{99}$の大小を比較せよ.
富山大学 国立 富山大学 2010年 第2問
$\displaystyle f(x)=(1+x)^{\frac{1}{x}} \ (x>0)$とするとき,次の問いに答えよ.

(1)$\log f(x)$を微分することによって,$f(x)$の導関数を求めよ.
(2)$0<x_1<x_2$をみたす実数$x_1,\ x_2$に対して,$f(x_1)>f(x_2)$であることを証明せよ.
(3)$\displaystyle \left( \frac{101}{100} \right)^{101}$と$\displaystyle \left( \frac{100}{99} \right)^{99}$の大小を比較せよ.
宮崎大学 国立 宮崎大学 2010年 第1問
次の各問に答えよ.
\vspace*{-6mm}
\begin{spacing}{2.2}

(1)次の関数を微分せよ.

(2)$y=e^{\sin x \cos x}$
(3)$\displaystyle y=\frac{x}{\sqrt{x^2+3}}$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_{\log \pi}^{\log (2\pi)} e^x \sin (e^x) \, dx$
(6)$\displaystyle \int_0^1 e^{2x}(x+1) \, dx$
(7)$\displaystyle \int_0^\pi \sin x \cos (4x) \, dx$
(8)$\displaystyle \int_{-1}^0 \frac{x+1}{(x+2)(x+3)} \, dx$


\end{spacing}
\vspace*{-6mm}
三重大学 国立 三重大学 2010年 第4問
$x$の微分可能な関数を成分とする行列$M=\biggl( \begin{array}{cc}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array} \biggr)$に対し,$M$の各成分を$x$で微分した行列$\biggl( \begin{array}{cc}
m_{11}^{\prime} & m_{12}^{\prime} \\
m_{21}^{\prime} & m_{22}^{\prime}
\end{array} \biggr)$を$M^{\prime}$と表す.$a_{11},\ a_{12},\ a_{21},\ a_{22}$および$b_{11},\ b_{12},\ b_{21},\ b_{22}$を$x$の微分可能な関数とし,
\[ A=\biggl( \begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array} \biggr),\quad B=\biggl( \begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array} \biggr) \]
とおく.

(1)等式$(AB)^\prime =A^\prime B+AB^\prime$が成り立つが,これを$(1,\ 2)$成分について確かめよ.
(2)$A$はすべての$x$について逆行列$A^{-1}$を持つとする.このとき(1)の等式を用いて,$A^\prime A^{-1}+A(A^{-1})^\prime$を求めよ.
(3)$A$はすべての$x$について逆行列を持つとする.$(A^{-1})^\prime$を$A^{-1},\ A^\prime$を用いて表せ.
宮崎大学 国立 宮崎大学 2010年 第5問
次の各問に答えよ.
\vspace*{-6mm}
\begin{spacing}{2.2}

(1)次の関数を微分せよ.

(2)$y=e^{\sin x \cos x}$
(3)$\displaystyle y=\frac{x}{\sqrt{x^2+3}}$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_{\log \pi}^{\log (2\pi)} e^x \sin (e^x) \, dx$
(6)$\displaystyle \int_0^1 e^{2x}(x+1) \, dx$
(7)$\displaystyle \int_0^\pi \sin x \cos (4x) \, dx$
(8)$\displaystyle \int_{-1}^0 \frac{x+1}{(x+2)(x+3)} \, dx$


\end{spacing}
\vspace*{-6mm}
スポンサーリンク

「微分」とは・・・

 まだこのタグの説明は執筆されていません。