タグ「微分可能」の検索結果

5ページ目:全46問中41問~50問を表示)
滋賀医科大学 国立 滋賀医科大学 2010年 第3問
次の問いに答えよ.

(1)$a$を実数の定数,$f(x)$をすべての点で微分可能な関数とする.このとき次の等式を示せ.
\[ f^\prime(x)+af(x)=e^{-ax}(e^{ax}f(x))^\prime \]
ただし,$^\prime$は$x$についての微分を表す.
(2)(1)の等式を利用して,次の式を満たす関数$f(x)$で,$f(0)=0$となるものを求めよ.
\[ f^\prime(x)+2f(x)=\cos x \]
(3)(2)で求めた関数$f(x)$に対して,数列$\displaystyle \left\{ |f(n \pi)| \right\} \ (n=1,\ 2,\ 3,\ \cdots)$の極限値
\[ \lim_{n \to \infty} |f(n \pi)| \]
を求めよ.
三重大学 国立 三重大学 2010年 第4問
$x$の微分可能な関数を成分とする行列$M=\biggl( \begin{array}{cc}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array} \biggr)$に対し,$M$の各成分を$x$で微分した行列$\biggl( \begin{array}{cc}
m_{11}^{\prime} & m_{12}^{\prime} \\
m_{21}^{\prime} & m_{22}^{\prime}
\end{array} \biggr)$を$M^{\prime}$と表す.$a_{11},\ a_{12},\ a_{21},\ a_{22}$および$b_{11},\ b_{12},\ b_{21},\ b_{22}$を$x$の微分可能な関数とし,
\[ A=\biggl( \begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array} \biggr),\quad B=\biggl( \begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array} \biggr) \]
とおく.

(1)等式$(AB)^\prime =A^\prime B+AB^\prime$が成り立つが,これを$(1,\ 2)$成分について確かめよ.
(2)$A$はすべての$x$について逆行列$A^{-1}$を持つとする.このとき(1)の等式を用いて,$A^\prime A^{-1}+A(A^{-1})^\prime$を求めよ.
(3)$A$はすべての$x$について逆行列を持つとする.$(A^{-1})^\prime$を$A^{-1},\ A^\prime$を用いて表せ.
大分大学 国立 大分大学 2010年 第3問
微分可能な関数$y=f(x)$が次の方程式を満たすとする.
\[ a_nf^{(n)}(x)+a_{n-1}f^{(n-1)}(x)+\cdots +a_1f^{(1)}(x)+a_0f(x)=0 (\text{A}) \]
ここに$n$は自然数,$a_i \ (i=0,\ 1,\ 2,\ \cdots, n)$は実数の定数で,$a_n \neq 0$である.また,$y^{(k)}=f^{(k)}(x)$は$f(x)$の$k$次導関数で$y^{(0)}=f^{(0)}(x)=f(x)$とする.(A)のような方程式を第$n$階微分方程式といい,(A)に対して$t$の$n$次方程式
\[ a_nt^n+a_{n-1}t^{n-1}+\cdots +a_1t+a_0=0 (\text{B}) \]
を(A)の特性方程式という.このとき次の問いに答えよ.

(1)特性方程式(B)の解が実数$r$であるとき,関数$y=e^{rx}$が方程式(A)を満たすことを証明せよ.
(2)$n$次方程式(B)が実数$r$を$k$重解$^{(\text{注})}$にもつとき,次の$t$に関する方程式は$r$を$k-1$重解にもつことを証明せよ.ただし,$k=2,\ 3,\ \cdots$とする.
\[ na_nt^{n-1}+(n-1)a_{n-1}t^{n-2}+\cdots +2a_2t+a_1=0 \]
(注) \quad $t$の$m$次方程式が適当な多項式$Q(t)$を用いて$(t-r)^kQ(t)=0$となるとき,$t=r$をこの方程式の$k$重解と定義する.ただし,$k=1,\ 2,\ \cdots$とする.
(3)実数の定数$r$に対して$x$の関数を$y_i=x^ie^{rx} \ (i=0,\ 1,\ 2,\ \cdots)$とする.このとき,$y_j^{(n)}$を$x,\ y_{j-1}^{(n-1)}$および$y_{j-1}^{(n)}$を用いて表せ.ただし,$j=1,\ 2,\ 3,\ \cdots$とする.
(4)実数$r$が$n$次方程式(B)の$k$重解であるとき$y_i=x^ie^{rx} \ (i=0,\ 1,\ 2,\ \cdots,\ k-1)$が微分方程式(A)を満たすことを証明せよ.ただし,$k$は自然数とする.
滋賀医科大学 国立 滋賀医科大学 2010年 第4問
2回微分可能な関数$f(x)$,すなわち$f(x)$の導関数$f^\prime(x)$及び$f^\prime(x)$の導関数$f^{\prime\prime}(x)$が存在する関数が,すべての実数$x$について
\[ f^\prime(x)>f^{\prime\prime}(x) \]
を満たしている.また,$a<b$とする.

(1)$\displaystyle \frac{f^\prime(a)}{e^a}>\frac{f^\prime(b)}{e^b}$を示せ.
(2)$\displaystyle \frac{f^\prime(a)}{e^a}>\frac{f(b)-f(a)}{e^b-e^a}>\frac{f^\prime(b)}{e^b}$を示せ.
(3)すべての実数$x$について$f(x)>0$であるとき,すべての実数$x$について
\[ f(x)>f^\prime(x)>0 \]
が成立することを示せ.
千葉大学 国立 千葉大学 2010年 第11問
$f(x)$は実数全体で定義された関数とする.実数$a$に関する条件$(\mathrm{P})$を考える.

$(\mathrm{P})$ 正の実数$r$を十分小さく選べば,$|x-a|<r$をみたすすべての実数$x$に対して$f(x) \leqq f(a)$が成り立つ.

このとき,以下の問いに答えよ.

(1)実数$a$が条件$(\mathrm{P})$をみたし,かつ,$f(x)$が$x=a$で微分可能ならば,$f^\prime(a)=0$であることを証明せよ.
(2)関数$f(x)$が
\[ f(x)=\left\{
\begin{array}{ll}
|x|-x & (x<1 \text{のとき}) \\
|x^2-6x+8| & (x \geqq 1 \text{のとき})
\end{array}
\right. \]
で定義されているとき,条件$(\mathrm{P})$をみたすような実数$a$全体の集合を決定せよ.
(3)一般に,実数全体で定義された関数$f(x)$に対し,次の命題は正しいか.正しければ証明し,正しくなければ反例を挙げよ.

(命題) すべての実数$a$が条件$(\mathrm{P})$をみたすならば,$f(x)$は定数関数である.
京都府立大学 公立 京都府立大学 2010年 第3問
関数$\displaystyle f(x)=\int_0^\pi |t^2-x^2| \sin t \, dt$について,以下の問いに答えよ.

(1)$f(0)$を求めよ.
(2)定数$a$を実数とする.$f(a)$を求めよ.
(3)$f(x)$は$x=\pi$で微分可能であることを示せ.
(4)点$(\pi,\ f(\pi))$における曲線$C:y=f(x)$の接線を$\ell$とする.$C$,$\ell$,および$y$軸で囲まれた部分の面積を求めよ.
スポンサーリンク

「微分可能」とは・・・

 まだこのタグの説明は執筆されていません。