タグ「得点」の検索結果

8ページ目:全80問中71問~80問を表示)
愛媛大学 国立 愛媛大学 2010年 第4問
$4$の数字が書かれたカードが$1$枚,$3$の数字が書かれたカードが$1$枚,$2$の数字が書かれたカードが$2$枚,$1$の数字が書かれたカードが$2$枚,$0$の数字が書かれたカードが$4$枚ある.これら$10$枚のカードをよくまぜて,左から右に一列に並べる.

(1)左から$4$番目までの$4$枚のカードに書かれた数がすべて$0$となる確率を求めよ.
(2)右から$1$番目のカードに書かれた数の期待値を求めよ.
(3)左から$3$番目までの$3$枚のカードに書かれた$3$つの数について,次の条件$①,\ ②$を考える.

\mon[$①$] $3$つの数がすべて異なる.
\mon[$②$] $3$つの数の中で,左から$1$番目のカードに書かれた数$a$が最大である.

条件$①,\ ②$の両方が同時にみたされた場合の得点を$a$とし,それ以外の場合の得点を$0$とする.

(i) 得点が$4$となる確率を求めよ.
(ii) 得点の期待値を求めよ.
福井大学 国立 福井大学 2010年 第1問
座標平面上に4点O$(0,\ 0)$,A$(4,\ 0)$,B$(4,\ 4)$,C$(0,\ 4)$をとり,正方形OABCを考える.点Bを出発点とする2つの動点P,Qが,次の規則に従って動くものとする.

1枚のコインを投げ,
表が出たときには,点Pは辺AB上を点Aの方向に1進み,点Qは動かない.
裏が出たときには,点Qは辺BC上を点Cの方向に1進み,点Pは動かない.

この試行を4回繰り返し,その結果できる三角形OPQの面積を得点とするゲームを行う.以下の問いに答えよ.

(1)ゲームの終了時に,点Pの座標が$(4,\ 1)$である確率を求めよ.
(2)このゲームの得点が8となる確率を求めよ.
(3)このゲームの得点の期待値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第1問
数字$k (k=1,\ 2,\ 3,\ 4,\ 5)$が記入されたカードがそれぞれ$k$枚あり,さらに,数字$0$が記入されたカードが$1$枚,合計$16$枚のカードがある.この中から$2$枚のカードを同時に取り出し,$2$枚のカードの数が同じ場合は$1$点,異なる場合は大きい方の数の点を得る.ただし,$0$を含む場合は大きい方の数の$2$倍の点を得る.このとき,次の各問に答えよ.

(1)得点が$1$点となる場合は何通りあるか.
(2)得点が$4$点以上となる確率を求めよ.
(3)得点が偶数となる確率を求めよ.
金沢工業大学 私立 金沢工業大学 2010年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}$のとき,$\displaystyle x+\frac{1}{x}=\sqrt{[アイ]}$,$\displaystyle x^2+\frac{1}{x^2}=[ウ]$である.

(2)$|\abs{x-1|-2}=3$の解は$x=[エオ],\ [カ]$である.
(3)$2$つの$2$次関数$y=6x^2+2kx+k$,$y=-x^2+(k-6)x-1$のグラフが両方とも$x$軸と共有点をもたないような定数$k$の値の範囲は$[キ]<k<[ク]$である.
(4)$0^\circ \leqq \theta \leqq 180^\circ$で$\displaystyle \tan \theta=-\frac{4}{3}$のとき,$\displaystyle \cos \theta=\frac{[ケコ]}{[サ]}$であり,$\displaystyle \sin (180^\circ-\theta)=\frac{[シ]}{[ス]}$である.
(5)不等式$\displaystyle \frac{2x-5}{4}<\frac{x+4}{3} \leqq \frac{3x+1}{6}$の解は$\displaystyle [セ] \leqq x<\frac{[ソタ]}{[チ]}$である.
(6)$1$から$100$までの整数のうち,$4$の倍数かつ$6$の倍数である整数は$[ツ]$個あり,$4$の倍数または$6$の倍数である整数は$[テト]$個ある.
(7)$1$個のさいころを投げて,偶数の目が出たときはその目の数の$2$倍を得点とし,奇数の目が出たときはその目の数の$3$倍を得点とするゲームを行う.このとき,このゲームの得点の期待値は$\displaystyle \frac{[アイ]}{[ウ]}$である.
(8)図のように,直線$\ell$は中心を$\mathrm{O}$とする円と点$\mathrm{A}$において接している.また,$\ell$上の点$\mathrm{P}$と$\mathrm{O}$を通る直線と円との交点を図のように$\mathrm{B}$,$\mathrm{C}$とし,$\angle \mathrm{PAB}=115^\circ$であるとする.このとき,
\[ \angle \mathrm{ABC}=[エオ]^\circ,\quad \angle \mathrm{APC}=[カキ]^\circ \]
である.
(図は省略)
学習院大学 私立 学習院大学 2010年 第2問
$2$つのサイコロを振り,出た目の和が$n$であるとき,$n$の「奇数部分」を得点とする.ただし,自然数$n$の「奇数部分」とは
\[ n=2^km \quad (k \text{は} 0 \text{以上の整数,} m \text{は奇数}) \]
と表したときの$m$のこととする.たとえば
\[ 4=2^2 \times 1,\quad 5=2^0 \times 5,\quad 6=2^1 \times 3 \]
であるので,$4,\ 5,\ 6$の「奇数部分」はそれぞれ$1,\ 5,\ 3$である.

(1)得点が$9$である確率を求めよ.
(2)得点が$1$である確率を求めよ.
(3)得点の期待値を求めよ.
岡山理科大学 私立 岡山理科大学 2010年 第1問
$1$から$3$の番号が$1$つずつ書かれた$3$種類のカードが,書かれた番号と同じ枚数だけ箱に入っている.この箱からカードを引きその番号を得点とする.このとき,次の設問に答えよ.

(1)カードを$1$枚引くときの得点の期待値を求めよ.
(2)カードを$2$枚同時に引くときの得点の合計の期待値を求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2010年 第2問
さいころを$4$個同時に振って$x$種類の数字がでたら$x$点とする.例えば$1,\ 2,\ 2,\ 5$がでたら$3$点である.このとき,次の問に答えなさい.

(1)$1$点となる確率は$\displaystyle \frac{[ア]}{[イウエ]}$である.

(2)$4$点となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.

(3)$2$点となる確率は$\displaystyle \frac{[クケ]}{[コサシ]}$である.

(4)$3$点となる確率は$\displaystyle \frac{[ス]}{[セ]}$である.

(5)得点$x$の期待値は$\displaystyle \frac{[ソタチ]}{[ツテト]}$である.
神奈川大学 私立 神奈川大学 2010年 第2問
さいころを$2$つ同時に投げる試行について,以下の問いに答えよ.

(1)$1$回の試行で両方とも偶数の目の出る確率を求めよ.
(2)試行を$3$回繰り返すとき,少なくとも$1$回は両方とも偶数の目の出る確率を求めよ.
(3)$1$回の試行で,$2$つのさいころの目が両方とも偶数ならば$4$点,それ以外ならば$2$点の得点がもらえるとする.試行を$3$回繰り返したときにもらえる総得点の期待値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第3問
$1$から$9$の数字がそれぞれ書かれた$9$枚のカードから,$\mathrm{A}$グループとして$3$枚,$\mathrm{B}$グループとして$4$枚のカードを選ぶ.次の問いに答えよ.

(1)このような選び方は何通りあるか.
(2)$\mathrm{A}$グループの数字がすべて$4$以下になる確率を求めよ.
(3)$\mathrm{A}$グループの最大数が$\mathrm{B}$グループの最小数より小さい場合の得点を$\mathrm{A}$グループの数字の和とし,そうでない場合は得点を$0$とする.得点の期待値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2010年 第5問
赤玉$n$個,白玉$n$個,合計$2n$個($n \geqq 2$)の玉を無作為に左から$1$列に並べるとき,得点$X$を次のように定める.

(i) 赤玉が連続している部分が$m$ヶ所($m \geqq 1$)あり,そこに含まれる赤玉の総数が$l$であるとき,$X=l-m+1$とする.
(ii) 赤玉が連続している部分がないときは,$X=1$とする.

たとえば,$n=5$のとき,赤赤白赤赤白赤白白白ならば,$X=4-2+1=3$である.

(1)$n=6$のとき,並べ方は全部で何通りあるか求めよ.また,このとき$X=1$,$2$,$3$,$4$,$5$,$6$となる並べ方はそれぞれ何通りあるか求め,$X$の期待値$E(X)$を求めよ.
(2)$n=k (k \geqq 7)$のとき,$X=3,\ 4$となる並べ方の総数をそれぞれ$k$を用いて表せ.
スポンサーリンク

「得点」とは・・・

 まだこのタグの説明は執筆されていません。