タグ「延長」の検索結果

3ページ目:全56問中21問~30問を表示)
宮崎大学 国立 宮崎大学 2014年 第3問
次の各問に答えよ.

(1)下図のように半径$r_1$の円$\mathrm{O}_1$と半径$r_2$の円$\mathrm{O}_2$が外接している.円$\mathrm{O}_1$と円$\mathrm{O}_2$の接点を$\mathrm{P}$とする.円$\mathrm{O}_1$の周上に点$\mathrm{P}$と異なる点$\mathrm{A}$をとり,線分$\mathrm{AP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{B}$とする.また,円$\mathrm{O}_1$の周上に点$\mathrm{P}$,点$\mathrm{A}$と異なる点$\mathrm{C}$をとり,線分$\mathrm{CP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{D}$とする.このとき,次の$(ⅰ)$,$(ⅱ)$に答えよ.
(図は省略)

(i) 点$\mathrm{P}$における円$\mathrm{O}_1$の接線を利用して,$\mathrm{AC} \para \mathrm{BD}$であることを示せ.
(ii) 円$\mathrm{O}_1$の中心と$\mathrm{O}_2$の中心を結ぶ直線を利用して,点$\mathrm{P}$は線分$\mathrm{AB}$を$r_1:r_2$に内分することを示せ.

(2)下図のように半径$3$の円$C_1$,半径$4$の円$C_2$,半径$5$の円$C_3$が互いに外接している.円$C_2$と円$C_3$の接点を$\mathrm{J}$,円$C_3$と円$C_1$の接点を$\mathrm{K}$,円$C_1$と円$C_2$の接点を$\mathrm{L}$とする.線分$\mathrm{JL}$の延長と円$C_1$の交点を$\mathrm{M}$とし,線分$\mathrm{JK}$の延長と円$C_1$の交点を$\mathrm{N}$とする.このとき,四角形$\mathrm{KLMN}$の面積は$\triangle \mathrm{JLK}$の面積の何倍であるかを求めよ.
(図は省略)
宮崎大学 国立 宮崎大学 2014年 第1問
次の各問に答えよ.

(1)下図のように半径$r_1$の円$\mathrm{O}_1$と半径$r_2$の円$\mathrm{O}_2$が外接している.円$\mathrm{O}_1$と円$\mathrm{O}_2$の接点を$\mathrm{P}$とする.円$\mathrm{O}_1$の周上に点$\mathrm{P}$と異なる点$\mathrm{A}$をとり,線分$\mathrm{AP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{B}$とする.また,円$\mathrm{O}_1$の周上に点$\mathrm{P}$,点$\mathrm{A}$と異なる点$\mathrm{C}$をとり,線分$\mathrm{CP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{D}$とする.このとき,次の$(ⅰ)$,$(ⅱ)$に答えよ.
(図は省略)

(i) 点$\mathrm{P}$における円$\mathrm{O}_1$の接線を利用して,$\mathrm{AC} \para \mathrm{BD}$であることを示せ.
(ii) 円$\mathrm{O}_1$の中心と$\mathrm{O}_2$の中心を結ぶ直線を利用して,点$\mathrm{P}$は線分$\mathrm{AB}$を$r_1:r_2$に内分することを示せ.

(2)下図のように半径$3$の円$C_1$,半径$4$の円$C_2$,半径$5$の円$C_3$が互いに外接している.円$C_2$と円$C_3$の接点を$\mathrm{J}$,円$C_3$と円$C_1$の接点を$\mathrm{K}$,円$C_1$と円$C_2$の接点を$\mathrm{L}$とする.線分$\mathrm{JL}$の延長と円$C_1$の交点を$\mathrm{M}$とし,線分$\mathrm{JK}$の延長と円$C_1$の交点を$\mathrm{N}$とする.このとき,四角形$\mathrm{KLMN}$の面積は$\triangle \mathrm{JLK}$の面積の何倍であるかを求めよ.
(図は省略)
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第2問
三角形$\mathrm{ABC}$において$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$,$\mathrm{AB}=c$,$\mathrm{CA}=b$,$\angle \mathrm{ACB}=\theta$とする.また辺$\mathrm{BC}$の延長上に点$\mathrm{D}$を$\mathrm{CD}=b$となるようにとり,$\angle \mathrm{ADB}=\alpha$とする.

(1)この$b,\ c$に対して$x+y=2b^2$,$xy=b^4-b^2c^2$を満足する$x,\ y$で$x>y$となるものを求めると,$(x,\ y)=[$5$]$である.
(2)線分$\mathrm{AD}$の長さの平方は$[$6$]$である.従って$\sin \alpha$の値を二重根号を用いずに,$b,\ c$で表せば$[$7$]$となり,さらにこれを$\sin \theta$で表せば$[$8$]$となる.
北星学園大学 私立 北星学園大学 2014年 第2問
$\triangle \mathrm{ABC}$の頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$と三角形の外部にある点$\mathrm{O}$を結ぶ各直線が,三角形の対辺またはその延長上と交わる点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.ただし,点$\mathrm{O}$は三角形の辺上にも,その延長上にもないものとする.
(図は省略)

(1)三角形の面積比$\triangle \mathrm{AOB}:\triangle \mathrm{AOC}$および$\triangle \mathrm{BOC}:\triangle \mathrm{BOA}$を線分$\mathrm{BP}$,$\mathrm{CP}$,$\mathrm{AQ}$,$\mathrm{CQ}$の長さを用いて求めよ.
(2)$\displaystyle \frac{\mathrm{AR}}{\mathrm{AB}} \cdot \frac{\mathrm{BP}}{\mathrm{PC}} \cdot \frac{\mathrm{CO}}{\mathrm{OR}}=1$となることを証明せよ.
(3)$\mathrm{AB}=5$,$\mathrm{BC}=8$,$\mathrm{AR}=4$,$\mathrm{CP}=3$のとき,比$\mathrm{RO}:\mathrm{CO}$を求めよ.
金沢工業大学 私立 金沢工業大学 2014年 第3問
図のように,点$\mathrm{O}$を中心とし,線分$\mathrm{AB}$を直径とする半径$1$の半円において,円周上に点$\mathrm{P}$をとり,$\angle \mathrm{POA}=\theta$とし,点$\mathrm{P}$における接線が線分$\mathrm{OA}$の延長と交わる点を$\mathrm{H}$とする.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.さらに,線分$\mathrm{OA}$上に$\angle \mathrm{OPB}=\angle \mathrm{OPD}$となるように点$\mathrm{D}$をとる.
(図は省略)

(1)$\displaystyle \mathrm{AP}=[ア] \sin \frac{\theta}{[イ]}$である.
(2)$\displaystyle \lim_{\theta \to +0} \frac{\mathrm{AP}}{\theta}=[ウ]$である.
(3)$\displaystyle \lim_{\theta \to +0} \frac{\mathrm{AH}}{\theta^2}=\frac{[エ]}{[オ]}$である.
(4)$\displaystyle \lim_{\theta \to +0} \mathrm{OD}=\frac{[カ]}{[キ]}$である.
京都女子大学 私立 京都女子大学 2014年 第2問
下の図において,点$\mathrm{O}$は$\triangle \mathrm{ABC}$の外心である.点$\mathrm{D}$は$2$点$\mathrm{B}$,$\mathrm{O}$を通る円$\mathrm{O}_1$と辺$\mathrm{BC}$との交点,点$\mathrm{E}$は円$\mathrm{O}_1$と辺$\mathrm{AB}$との交点である.また,点$\mathrm{F}$は$3$点$\mathrm{O}$,$\mathrm{D}$,$\mathrm{C}$を通る円$\mathrm{O}_2$と,辺$\mathrm{AC}$の延長との交点である.次の問に答えよ.
(図は省略)

(1)$4$点$\mathrm{A}$,$\mathrm{E}$,$\mathrm{O}$,$\mathrm{F}$は同一円周上にあることを証明せよ.
(2)円$\mathrm{O}_1$の半径を$R_1$,円$\mathrm{O}_2$の半径を$R_2$,$4$点$\mathrm{A}$,$\mathrm{E}$,$\mathrm{O}$,$\mathrm{F}$を通る円の半径を$R_3$とおく.$R_1=R_2=R_3$を証明せよ.
安田女子大学 私立 安田女子大学 2014年 第4問
図のように半径$2$の円$\mathrm{O}$と半径$5$の円$\mathrm{O}^\prime$があり,$\mathrm{OO}^\prime=6$である.円$\mathrm{O}$,$\mathrm{O}^\prime$の共通接線の接点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とするとき,次の問いに答えよ.
(図は省略)

(1)線分$\mathrm{AB}$の長さを求めよ.
(2)円$\mathrm{O}$と$\mathrm{O}^\prime$の交点を$\mathrm{S}$,$\mathrm{T}$とし,その延長と線分$\mathrm{AB}$の交点を$\mathrm{M}$とするとき,$\mathrm{MS} \cdot \mathrm{MT}$の値を求めよ.
(3)線分$\mathrm{ST}$の長さを求めよ.
成城大学 私立 成城大学 2014年 第2問
$\triangle \mathrm{ABC}$の面積を$S$,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とし,$\triangle \mathrm{ABC}$の各頂点から向かい合う辺またはその延長に下ろした$3$本の垂線を$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$とする.

(1)$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$の長さを$S,\ a,\ b,\ c$を用いてそれぞれ表せ.
(2)$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$の長さの比が$1:2:3$になることはあり得ないことを証明せよ.
上智大学 私立 上智大学 2014年 第1問
次の$[あ]$~$[お]$に当てはまるものを,下の選択肢から選べ.

(1)$\displaystyle x=-\frac{2}{3}$は$3x^2-13x-10=0$であるための$[あ]$
(2)$n$を自然数とする.$n^2$が$5$の倍数であることは,$n$が$5$の倍数であるための$[い]$
(3)$a,\ b$を自然数とする.$(a+b)^2$が奇数であることは,$ab$が偶数であるための$[う]$
(4)平面上の異なる$2$つの円$C$,$C^\prime$の半径をそれぞれ$r$,$r^\prime$とし,中心間の距離を$d$とする.ただし,$r<r^\prime$とする.このとき,$C$と$C^\prime$が共有点をもたないことは,$d>r+r^\prime$であるための$[え]$
(5)$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$の延長上に$\mathrm{CD}=4$となる点$\mathrm{D}$をとり,辺$\mathrm{AC}$上に$\mathrm{AE}=3$となる点$\mathrm{E}$をとる.このとき,辺$\mathrm{AB}$上の点$\mathrm{F}$に対して,$\mathrm{AF}=3$であることは,$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が一直線上にあるための$[お]$
選択肢:

\mon[$①$] 必要条件であるが十分条件ではない.
\mon[$②$] 十分条件であるが必要条件ではない.
\mon[$③$] 必要十分条件である.
\mon[$④$] 必要条件でも十分条件でもない.
東京理科大学 私立 東京理科大学 2014年 第2問
平面上に同一直線上にない$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が与えられているとし,$\triangle \mathrm{ABC}$の内部の点$\mathrm{P}$が
\[ 4 \overrightarrow{\mathrm{AP}}+7 \overrightarrow{\mathrm{BP}}+2 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]
を満たしているとする.線分$\mathrm{AP}$を延長した直線と線分$\mathrm{BC}$との交点を$\mathrm{Q}$,線分$\mathrm{BP}$を延長した直線と線分$\mathrm{AC}$との交点を$\mathrm{R}$とおく.


(1)$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{[ア]}{[イ][ウ]} \overrightarrow{\mathrm{AB}}+\frac{[エ]}{[オ][カ]} \overrightarrow{\mathrm{AC}}$である.

(2)点$\mathrm{P}$は線分$\mathrm{AQ}$を$[キ]:[ク]$に内分する点であり,点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ケ]:[コ]$に内分する点である.
(3)$\triangle \mathrm{APB}$の面積を$S$,四角形$\mathrm{CQPR}$の面積を$T$とおくと,
\[ S:T=[サ]:[シ][ス] \]
である.
スポンサーリンク

「延長」とは・・・

 まだこのタグの説明は執筆されていません。