タグ「座標」の検索結果

98ページ目:全2097問中971問~980問を表示)
神戸大学 国立 神戸大学 2013年 第2問
$p,\ r$を$-r<p<r$をみたす実数とする.$4$点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(r,\ p^2)$,$\mathrm{R}(r,\ r^2)$,$\mathrm{S}(p,\ r^2)$に対し,線分$\mathrm{PR}$の長さは$1$であるとする.このとき,長方形$\mathrm{PQRS}$の面積の最大値と,そのときの$\mathrm{P},\ \mathrm{R}$の$x$座標をそれぞれ求めよ.
神戸大学 国立 神戸大学 2013年 第2問
$a,\ b,\ c$は実数とし,$a<b$とする.平面上の相異なる$3$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$,$\mathrm{C}(c,\ c^2)$が,辺$\mathrm{AB}$を斜辺とする直角三角形を作っているとする.次の問いに答えよ.

(1)$a$を$b,\ c$を用いて表せ.
(2)$b-a \geqq 2$が成り立つことを示せ.
(3)斜辺$\mathrm{AB}$の長さの最小値と,そのときの$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ求めよ.
九州大学 国立 九州大学 2013年 第4問
原点$\mathrm{O}$を中心とし,点$\mathrm{A}(0,\ 1)$を通る円を$S$とする.点$\displaystyle \mathrm{B} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$で円$S$に内接する円$T$が,点$\mathrm{C}$で$y$軸に接しているとき,以下の問いに答えよ.

(1)円$T$の中心$\mathrm{D}$の座標と半径を求めよ.
(2)点$\mathrm{D}$を通り$x$軸に平行な直線を$\ell$とする.円$S$の短い方の弧$\koa{AB}$,円$T$の短い方の弧$\koa{BC}$,および線分$\mathrm{AC}$で囲まれた図形を$\ell$のまわりに1回転してできる立体の体積を求めよ.
神戸大学 国立 神戸大学 2013年 第1問
空間において,$2$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(-1,\ 0,\ 0)$を通る直線を$\ell$とする.次の問いに答えよ.

(1)点$\mathrm{P}$を$\ell$上に,点$\mathrm{Q}$を$z$軸上にとる.$\overrightarrow{\mathrm{PQ}}$がベクトル$(3,\ 1,\ -1)$と平行になるときの$\mathrm{P}$と$\mathrm{Q}$の座標をそれぞれ求めよ.
(2)点$\mathrm{R}$を$\ell$上に,点$\mathrm{S}$を$z$軸上にとる.$\overrightarrow{\mathrm{RS}}$が$\overrightarrow{\mathrm{AB}}$およびベクトル$(0,\ 0,\ 1)$の両方に垂直になるときの$\mathrm{R}$と$\mathrm{S}$の座標をそれぞれ求めよ.
(3)$\mathrm{R},\ \mathrm{S}$を$(2)$で求めた点とする.点$\mathrm{T}$を$\ell$上に,点$\mathrm{U}$を$z$軸上にとる.また,$\overrightarrow{v}=(a,\ b,\ c)$は零ベクトルではなく,$\overrightarrow{\mathrm{RS}}$に垂直ではないとする.$\overrightarrow{\mathrm{TU}}$が$\overrightarrow{v}$と平行になるときの$\mathrm{T}$と$\mathrm{U}$の座標をそれぞれ求めよ.
神戸大学 国立 神戸大学 2013年 第1問
空間において,$2$点$\mathrm{A}(0,\ 1,\ 0)$,$\mathrm{B}(-1,\ 0,\ 0)$を通る直線を$\ell$とする.次の問いに答えよ.

(1)点$\mathrm{P}$を$\ell$上に,点$\mathrm{Q}$を$z$軸上にとる.$\overrightarrow{\mathrm{PQ}}$がベクトル$(3,\ 1,\ -1)$と平行になるときの$\mathrm{P}$と$\mathrm{Q}$の座標をそれぞれ求めよ.
(2)点$\mathrm{R}$を$\ell$上に,点$\mathrm{S}$を$z$軸上にとる.$\overrightarrow{\mathrm{RS}}$が$\overrightarrow{\mathrm{AB}}$およびベクトル$(0,\ 0,\ 1)$の両方に垂直になるときの$\mathrm{R}$と$\mathrm{S}$の座標をそれぞれ求めよ.
(3)$\mathrm{R},\ \mathrm{S}$を$(2)$で求めた点とする.点$\mathrm{T}$を$\ell$上に,点$\mathrm{U}$を$z$軸上にとる.また,$\overrightarrow{v}=(a,\ b,\ c)$は零ベクトルではなく,$\overrightarrow{\mathrm{RS}}$に垂直ではないとする.$\overrightarrow{\mathrm{TU}}$が$\overrightarrow{v}$と平行になるときの$\mathrm{T}$と$\mathrm{U}$の座標をそれぞれ求めよ.
九州大学 国立 九州大学 2013年 第2問
座標平面上で,次の連立不等式の表す領域を$D$とする.
\[ x+2y \leqq 5,\quad 3x+y \leqq 8,\quad -2x-y \leqq 4,\quad -x-4y \leqq 7 \]
点$\mathrm{P}(x,\ y)$が領域$D$内を動くとき,$x+y$の値が最大となる点を$\mathrm{Q}$とし,最小となる点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)点$\mathrm{Q}$および点$\mathrm{R}$の座標を求めよ.
(2)$a>0$かつ$b>0$とする.点$\mathrm{P}(x,\ y)$が領域$D$内を動くとき,$ax+by$が点$\mathrm{Q}$でのみ最大値をとり,点$\mathrm{R}$でのみ最小値をとるとする.このとき,$\displaystyle \frac{a}{b}$の値の範囲を求めよ.
九州大学 国立 九州大学 2013年 第4問
座標平面上の円$(x-1)^2+(y-1)^2=2$を$C$とする.以下の問いに答えよ.

(1)直線$y=x-2$は円$C$に接することを示せ.また,接点の座標も求めよ.
(2)円$C$と放物線$\displaystyle y=\frac{1}{4}x^2-1$の共有点の座標をすべて求めよ.
(3)不等式$\displaystyle y \geqq \frac{1}{4}x^2-1$の表す領域を$D$とする.また,不等式$|x|+|y| \leqq 2$の表す領域を$A$とし,不等式$(|x|-1)^2+(y-1)^2 \leqq 2$の表す領域を$B$とする.そして,和集合$A \cup B$,すなわち領域$A$と領域$B$を合わせた領域を$E$とする.このとき,領域$D$と領域$E$の共通部分$D \cap E$を図示し,さらに,その面積を求めよ.
熊本大学 国立 熊本大学 2013年 第2問
$\mathrm{O}$を原点とする空間内の$2$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(2,\ 1,\ -2)$に対して,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}} \geqq 0$かつ$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OP}} \geqq 0$を満たす平面$\mathrm{OAB}$上の点$\mathrm{P}$からなる領域を$D$とする.以下の問いに答えよ.

(1)実数$k$に対して,$\overrightarrow{\mathrm{OQ}}=k \overrightarrow{\mathrm{OA}}+(1-k) \overrightarrow{\mathrm{OB}}$によって定まる点$\mathrm{Q}$が領域$D$に含まれるとき,$k$の値の範囲を求めよ.
(2)点$\mathrm{C}$を中心とする半径$\sqrt{6}$の円が領域$D$に含まれるとき,$|\overrightarrow{\mathrm{OC}}|$が最小となる$\mathrm{C}$の座標を求めよ.
熊本大学 国立 熊本大学 2013年 第4問
$xy$平面上で,点$(1,\ 0)$までの距離と$y$軸までの距離の和が2である点の軌跡を$C$とする.以下の問いに答えよ.

(1)$C$で囲まれた部分の面積を求めよ.
(2)円$\displaystyle x^2+y^2=\frac{9}{4}$と$C$の交点の$x$座標をすべて求めよ.さらに,交点の個数を求めよ.
千葉大学 国立 千葉大学 2013年 第5問
$a,\ b$を実数とし,$a>0$とする.放物線$\displaystyle y=\frac{x^2}{4}$上に$2$点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{4} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{b^2}{4} \right)$をとる.点$\mathrm{A}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{A}$と$n_\mathrm{A}$,点$\mathrm{B}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{B}$と$n_\mathrm{B}$とおいたとき,$\ell_\mathrm{A}$と$\ell_\mathrm{B}$が直交しているものとする.$2$つの接線$\ell_\mathrm{A},\ \ell_\mathrm{B}$の交点を$\mathrm{P}$とし,$2$つの法線$n_\mathrm{A},\ n_\mathrm{B}$の交点を$\mathrm{Q}$とする.

(1)$b$を$a$を用いて表せ.
(2)$\mathrm{P},\ \mathrm{Q}$の座標を$a$を用いて表せ.
(3)長方形$\mathrm{AQBP}$の面積が最小となるような$a$の値と,そのときの面積を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。