タグ「座標」の検索結果

96ページ目:全2097問中951問~960問を表示)
北海道大学 国立 北海道大学 2013年 第4問
次の規則に従って座標平面を動く点$\mathrm{P}$がある.2個のサイコロを同時に投げて出た目の積を$X$とする.

(i) $X$が$4$の倍数ならば,点$\mathrm{P}$は$x$軸方向に$-1$動く.
(ii) $X$を$4$で割った余りが$1$ならば,点$\mathrm{P}$は$y$軸方向に$-1$動く.
(iii) $X$を$4$で割った余りが$2$ならば,点$\mathrm{P}$は$x$軸方向に$+1$動く.
\mon[$\tokeishi$] $X$を$4$で割った余りが$3$ならば,点$\mathrm{P}$は$y$軸方向に$+1$動く.

たとえば,$2$と$5$が出た場合には$2 \times 5=10$を$4$で割った余りが$2$であるから,点$\mathrm{P}$は$x$軸方向に$+1$動く. \\
\quad 以下のいずれの問題でも,点$\mathrm{P}$は原点$(0,\ 0)$を出発点とする.

(1)$2$個のサイコロを$1$回投げて,点$\mathrm{P}$が$(-1,\ 0)$にある確率を求めよ.
(2)$2$個のサイコロを$3$回投げて,点$\mathrm{P}$が$(2,\ 1)$にある確率を求めよ.
(3)$2$個のサイコロを$4$回投げて,点$\mathrm{P}$が$(1,\ 1)$にある確率を求めよ.
北海道大学 国立 北海道大学 2013年 第2問
次の規則に従って座標平面を動く点$\mathrm{P}$がある.$2$個のサイコロを同時に投げて出た目の積を$X$とする.

(i) $X$が$4$の倍数ならば,点$\mathrm{P}$は$x$軸方向に$-1$動く.
(ii) $X$を$4$で割った余りが$1$ならば,点$\mathrm{P}$は$y$軸方向に$-1$動く.
(iii) $X$を$4$で割った余りが$2$ならば,点$\mathrm{P}$は$x$軸方向に$+1$動く.
\mon[$\tokeishi$] $X$を$4$で割った余りが$3$ならば,点$\mathrm{P}$は$y$軸方向に$+1$動く.

たとえば,$2$と$5$が出た場合には$2 \times 5=10$を$4$で割った余りが$2$であるから,点$\mathrm{P}$は$x$軸方向に$+1$動く. \\
\quad 以下のいずれの問題でも,点$\mathrm{P}$は原点$(0,\ 0)$を出発点とする.

(1)$2$個のサイコロを$1$回投げて,点$\mathrm{P}$が$(1,\ 0)$にある確率を求めよ.
(2)$2$個のサイコロを$1$回投げて,点$\mathrm{P}$が$(0,\ 1)$にある確率を求めよ.
(3)$2$個のサイコロを$3$回投げて,点$\mathrm{P}$が$(2,\ 1)$にある確率を求めよ.
岡山大学 国立 岡山大学 2013年 第3問
$xy$平面上の$2$点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$に対して,$d(\mathrm{P}_1,\ \mathrm{P}_2)$を
\[ d(\mathrm{P}_1,\ \mathrm{P}_2)=|x_1-x_2|+|y_1-y_2| \]
で定義する.いま点$\mathrm{A}(3,\ 0)$と点$\mathrm{B}(-3,\ 0)$に対して,
\[ d(\mathrm{Q},\ \mathrm{A})=2d(\mathrm{Q},\ \mathrm{B}) \]
を満たす点$\mathrm{Q}$からなる図形を$T$とする.このとき,以下の問いに答えよ.

(1)点$(a,\ b)$が$T$上にあれば,点$(a,\ -b)$も$T$上にあることを示せ.
(2)$T$で囲まれる領域の面積を求めよ.
(3)点$\mathrm{C}$の座標を$(13,\ 8)$とする.点$\mathrm{D}$が$T$上を動くとき,$d(\mathrm{D},\ \mathrm{C})$の最小値を求めよ.
岡山大学 国立 岡山大学 2013年 第4問
$xy$平面において,点$(1,\ 2)$を通る傾き$t$の直線を$\ell$とする.また,$\ell$に垂直で原点を通る直線と$\ell$との交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{P}$の軌跡が$2$次曲線$2x^2-ay=0$と$3$点のみを共有するような$a$の値を求めよ.また,そのとき$3$つの共有点の座標を求めよ.ただし$a \neq 0$とする.
広島大学 国立 広島大学 2013年 第3問
座標平面上の$2$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(t,\ 0)$を考える.ただし,$t \geqq 0$とする.次の問いに答えよ.

(1)線分$\mathrm{AB}$を$1$辺とする正三角形は$2$つある.それぞれの正三角形について,$2$点$\mathrm{A}$,$\mathrm{B}$以外の頂点の座標を$t$を用いて表せ.
(2)$(1)$で求めた$2$点のうち$x$座標が小さい方を$\mathrm{C}$とする.$t$を動かすとき,点$\mathrm{C}$の軌跡を図示せよ.
(3)$k$を定数とする.点$\mathrm{B}$と直線$y=kx$上の点$\mathrm{P}$をそれぞれうまく選ぶことで$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$を頂点とする正三角形ができるとき,$k$の値の範囲を求めよ.
広島大学 国立 広島大学 2013年 第1問
放物線$y=2x^2-8$を$C$とする.$x$軸上の点$\mathrm{A}(a,\ 0) \ (a>0)$を通り$C$と接する直線が$2$本あるとき,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$2$つの接点$\mathrm{P},\ \mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta \ (\alpha<\beta)$とする.$\beta-\alpha=3$のとき,$a$の値と$2$本の接線の方程式を求めよ.
(3)$(2)$で求めた$2$本の接線と$C$で囲まれた部分の面積を求めよ.
広島大学 国立 広島大学 2013年 第2問
座標平面上に点$\mathrm{A}(\cos \theta,\ \sin \theta) \ (0<\theta<\pi)$がある.原点を$\mathrm{O}$とし,$x$軸に関して点$\mathrm{A}$と対称な点を$\mathrm{B}$とする.次の問いに答えよ.

(1)$\displaystyle -1< \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}} \leqq \frac{1}{2}$となる$\theta$の範囲を求めよ.
(2)点$\mathrm{P}$を
\[ \overrightarrow{\mathrm{OP}}=2 \overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{OB}} \]
で定める.点$\mathrm{P}$から$x$軸に下ろした垂線を$\mathrm{PQ}$とする.$\theta$が(1)で求めた範囲を動くとき,$\triangle \mathrm{POQ}$の面積の最大値を求めよ.
岡山大学 国立 岡山大学 2013年 第4問
$C$を$xy$平面上の放物線$y=x^2$とする.不等式$y<x^2$で表される領域の点$\mathrm{P}$から$C$に引いた$2$つの接線に対して,それぞれの接点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.また,$2$つの接線と$C$で囲まれた部分の面積を$S$とする.このとき,以下の問いに答えよ.ただし,等式
\[ \int_p^q (x-p)^2 \, dx=\frac{(q-p)^3}{3} \]
を用いてもよい.

(1)点$\mathrm{P}$の座標$(a,\ b)$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle S=\frac{(\beta-\alpha)^3}{12}$を示せ.
(3)点$\mathrm{P}$が曲線$y=x^3-1 \ (-1 \leqq x \leqq 1)$上を動くとき,$(\beta-\alpha)^2$の値の範囲を調べよ.さらに,$S$の最大値および最小値を与える点$\mathrm{P}$の座標を求めよ.
岡山大学 国立 岡山大学 2013年 第2問
行列$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right)$で定まる座標平面上の$1$次変換を$f$とする.ただし,$a,\ b$は実数とする.このとき,以下の問いに答えよ.

(1)原点$\mathrm{O}$とは異なる点$\mathrm{P}(x,\ y)$を$f$で移した点を$\mathrm{Q}$とする.このとき,長さの比の値$\displaystyle \frac{\mathrm{OQ}}{\mathrm{OP}}$は$\mathrm{P}$によらないことを示し,その値を$a,\ b$を用いて表せ.
(2)正の整数$n$に対して,$A^n=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right)$とするとき,
\[ p_n^2+r_n^2=(a^2+b^2)^n,\quad q_n^2+s_n^2=(a^2+b^2)^n \]
が成り立つことを示せ.
(3)$109^2=l^2+m^2$を満たす正の整数$l,\ m$を一組求めよ.
広島大学 国立 広島大学 2013年 第1問
$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.座標平面上で原点$\mathrm{O}$を通り傾きが$\tan \theta$の直線を$\ell$とし,行列
\[ \left( \begin{array}{cc}
\cos^2 \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin^2 \theta
\end{array} \right) \]
の表す$1$次変換を$f$とする.座標平面上に$2$点$\mathrm{P},\ \mathrm{Q}$がある.次の問いに答えよ.

(1)線分$\mathrm{OP}$が直線$\ell$と垂直であるとき,$1$次変換$f$による点$\mathrm{P}$の像を求めよ.
(2)$1$次変換$f$による点$\mathrm{Q}$の像を$\mathrm{R}$とする.このとき$|\overrightarrow{\mathrm{OR}}| \leqq |\overrightarrow{\mathrm{OQ}}|$が成り立つことを示せ.さらに等号が成立する場合を調べよ.
(3)$1$次変換$f$による点$(1,\ 1)$の像を$\mathrm{S}$とする.このとき$|\overrightarrow{\mathrm{OS}}|$が最大となる$\theta$と最小となる$\theta$をそれぞれ求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。