タグ「座標」の検索結果

93ページ目:全2097問中921問~930問を表示)
大阪府立大学 公立 大阪府立大学 2014年 第4問
$a$は正の定数とし,曲線$C_1:y=ax^2 (0 \leqq x \leqq 1)$と$\displaystyle C_2:y=\frac{1}{a}(x-1)^2 (0 \leqq x \leqq 1)$および$x$軸で囲まれる部分の面積を$S(a)$とする.

(1)$C_1$と$C_2$の交点の$x$座標を求めよ.
(2)$S(a)$を求めよ.
(3)$a$がすべての正の実数を動くとき,$S(a)$の最大値とそれを与える$a$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第1問
数直線上の座標$x$に点$\mathrm{P}$があるとき,表と裏がそれぞれ$\displaystyle \frac{1}{2}$の確率で出る硬貨$2$枚を$1$回投げて,点$\mathrm{P}$の位置を次のように決める.

$(ⅰ)$ $2$枚とも表が出たときは,座標$x+1$に移動する.
$(ⅱ)$ $2$枚とも裏が出たときは,座標$x-1$に移動する.
$(ⅲ)$ 表と裏が$1$枚ずつ出たときは,移動しない.

点$\mathrm{P}$の最初の位置を座標$0$とする.硬貨$2$枚を$5$回投げ終わったときに,点$\mathrm{P}$が次の位置にある確率をそれぞれ求めよ.

(1)座標$4$
(2)座標 $3$
(3)座標$0$
公立はこだて未来大学 公立 公立はこだて未来大学 2014年 第4問
$f(x)=|x^2-3x+2|$とする.曲線$y=f(x)$を$C$とし,曲線$C$上の点$\mathrm{A}(a,\ f(a))$における接線を$\ell$とする.ただし,$1<a<2$とする.以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$の共有点のうち,接点$\mathrm{A}$とは異なる$2$つの点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$で表せ.
(3)曲線$C$と接線$\ell$で囲まれた部分の面積を$S$とするとき,$S$のとりうる値の範囲を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2014年 第7問
$f(x)=\log x$,$g(x)=(\log x)^2$とするとき,以下の問いに答えよ.

(1)関数$y=f(x)$と関数$y=g(x)$のグラフを$1$つの座標平面上にかけ.
(2)曲線$y=f(x)$と曲線$y=g(x)$で囲まれた部分の面積を求めよ.
札幌医科大学 公立 札幌医科大学 2014年 第3問
$a$を$0<a<1$とする.座標空間の$4$点を$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\displaystyle \mathrm{B} \left( 0,\ \frac{1}{a},\ 0 \right)$,$\displaystyle \mathrm{C} \left( 0,\ 0,\ \frac{1}{1-a} \right)$とする.また,$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を頂点とする四面体に内接する球を$S$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に直交し長さが$1$のベクトルを$a$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と球$S$の接点の座標を$a$を用いて表せ.
(3)球$S$の半径を$a$を用いて表せ.
(4)球$S$の体積の最大値を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2014年 第1問
次式で与えられる$2$つの放物線$C_1,\ C_2$について,以下の問いに答えよ.
\[ C_1:y=x^2,\quad C_2:y=ax^2+1 \]
ただし,$a$は$0$でない定数とする.

(1)$C_1$と$C_2$が$2$個の共有点をもつように,定数$a$のとりうる値の範囲を求めよ.さらに,そのときの共有点の座標をすべて求めよ.
(2)$a$の値が$(1)$で求めた範囲にあるとき,第$1$象限における$C_1$と$C_2$の共有点を$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$と$C_2$の接線をそれぞれ$\ell_1$,$\ell_2$とする.また,$\ell_1$と$\ell_2$および$y$軸で囲まれた部分の面積を$S_1$,$C_1$と$C_2$で囲まれた部分の面積を$S_2$とする.このとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
岩手県立大学 公立 岩手県立大学 2014年 第1問
以下の問いに答えなさい.

$y=2(x-1)(x^2-2x-2)$で与えられる平面上の曲線$C$を考える.

(1)曲線$C$と$x$軸との交点の座標をすべて答えなさい.
(2)$x=a$で曲線$C$と接する接線の方程式を$a$を用いて答えなさい.
(3)$x=a$で曲線$C$と接する接線と$y$軸との交点の$y$座標を$b$とする.$\displaystyle -\frac{1}{4} \leqq a \leqq 3$における$b$の最小値と最大値を答えなさい.また,$b$の値が最小,最大となるときの$a$の値をそれぞれ答えなさい.
福島県立医科大学 公立 福島県立医科大学 2014年 第1問
以下の各問いに答えよ.

(1)$a$は実数とする.極限$\displaystyle \lim_{x \to +0} \int_x^2 t^a \, dt$を調べよ.
(2)$\displaystyle \alpha,\ \beta \left( 0<\alpha \leqq \beta<\frac{\pi}{2} \right)$が$\tan \alpha \tan \beta=1$を満たすとき,$\displaystyle \alpha+\beta=\frac{\pi}{2}$であることを示せ.
(3)点$\mathrm{P}(x,\ y)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$の上を動くとき,$3x^2-16xy-12y^2$の値が最大になる点$\mathrm{P}$の座標を求めよ.
(4)公正なサイコロを$2$回振り,$1$回目に出た目を$a$,$2$回目に出た目を$b$とする.また,公正なコインを$1$回投げ,表が出たら$c=1$,裏が出たら$c=-1$とする.$\mathrm{O}$を原点とする座標平面上の$2$点$\mathrm{A}$,$\mathrm{B}$を$\mathrm{A}(a,\ b)$,$\mathrm{B}(b,\ ca)$と定める.次の問いに答えよ.

(i) $\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直になる確率を求めよ.
(ii) $\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が平行になる確率を求めよ.
(iii) 内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の期待値を求めよ.
\mon[$\tokeishi$] $\triangle \mathrm{OAB}$の面積の期待値を求めよ.ただし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が平行になるときは面積を$0$とする.
兵庫県立大学 公立 兵庫県立大学 2014年 第4問
行列$\left( \begin{array}{cc}
3 & -1 \\
4 & -1
\end{array} \right)$で表される移動によって点$\mathrm{A}$は点$\mathrm{A}^\prime$に,点$\mathrm{B}$は点$\mathrm{B}^\prime$に移るとする.$\mathrm{O}$を原点とする.$\mathrm{OA}=1$,$\mathrm{A}=\mathrm{A}^\prime$であって,かつ四角形$\mathrm{OAB}^\prime \mathrm{B}$が長方形のとき,点$\mathrm{A}$,点$\mathrm{B}$の座標を求めよ.
兵庫県立大学 公立 兵庫県立大学 2014年 第3問
互いに異なる$2$つの正の実数$a,\ b$をそれぞれ底とする$2$つの対数関数を考え,これらのグラフ$C_a:y=\log_ax$,および,$C_b:y=\log_bx$を図に示した.また,図中の点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{T}$はそれぞれ,直線$x=t (t>0,\ t \neq 1)$と$C_a$,$C_b$,および$x$軸との交点である.$t=a$のとき,$\mathrm{AT}:\mathrm{BT}=3:2$であった.次の問に答えなさい.
(図は省略)

(1)$a,\ b,\ 1$それぞれの間に成り立つ大小関係を調べなさい.
(2)条件$t \neq 1$,$t>0$を満たす任意の実数$t$に対して定まる$\mathrm{A}$,$\mathrm{B}$,$\mathrm{T}$について,$\mathrm{AT}:\mathrm{BT}$を求めなさい.
(3)図中の点$\mathrm{P}$,$\mathrm{Q}$は各々$C_a$,$C_b$上の点であり,各々の$y$座標は互いに等しく,点$\mathrm{Q}$の$x$座標は$8$である.このとき,点$\mathrm{P}$の$x$座標$u$の値を求めなさい.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。