タグ「座標」の検索結果

90ページ目:全2097問中891問~900問を表示)
北里大学 私立 北里大学 2014年 第5問
$a$を実数とし,関数$f(x)$を$f(x)=2x^3-3(a+2)x^2+12ax$で定める.

(1)$f(x)$が極値をもつとき,その値は$[タ]$である.
(2)$y=f(x)$のグラフが$a$の値に関係なく通る点で,原点$\mathrm{O}$でないものを$\mathrm{A}$とする.点$\mathrm{A}$の座標は$[チ]$である.
(3)点$\mathrm{A}$を$(2)$で定めた点とする.線分$\mathrm{OA}$と$y=f(x)$のグラフが$2$点$\mathrm{O}$,$\mathrm{A}$以外に共有点をもつ$a$の値の範囲は$[ツ]<a<[テ]$である.
(4)$x \geqq 0$を満たすすべての実数$x$について,不等式$f(x) \geqq 0$が成り立つ$a$の値の範囲は$[ト] \leqq a \leqq [ナ]$である.
(5)$a \geqq 3.5$を満たすすべての実数$a$について,方程式$f(x)=k$が$3$つの異なる実数解をもつ実数$k$の値の範囲は$[ニ]<k<[ヌ]$である.
名城大学 私立 名城大学 2014年 第4問
$xy$平面上に,放物線$C_1:y=x^2-1$,$C_2:y=x^2$がある.$C_1$上を動く点$\mathrm{P}(p,\ p^2-1)$から$C_2$に$2$本の接線を引き,それらの接点を$\mathrm{Q}(\alpha,\ \alpha^2)$,$\mathrm{R}(\beta,\ \beta^2) (\alpha<\beta)$とする.さらに,$C_2$と$2$直線$\mathrm{PQ}$,$\mathrm{PR}$で囲まれる部分の面積を$S$とする.

(1)$\mathrm{P}$の座標を$\alpha,\ \beta$を用いて表せ.
(2)$S$を$\alpha,\ \beta$を用いて表せ.
(3)$S$は$\mathrm{P}$の位置によらず一定であることを示し,その値を求めよ.
東京理科大学 私立 東京理科大学 2014年 第5問
座標平面上の曲線$y=x^2$上に$2$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(3,\ 9)$をとり,$t$を実数として,点$\mathrm{P}(t,\ t^2)$をとる.$f(t)=\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$とおく.ただし,$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}$は$2$つのベクトル$\overrightarrow{\mathrm{PA}}$と$\overrightarrow{\mathrm{PB}}$の内積を表している.さらに,$t \neq -1,\ 3$のとき,$2$つのベクトル$\overrightarrow{\mathrm{PA}}$と$\overrightarrow{\mathrm{PB}}$のなす角を$\theta$とおく.ただし,$0 \leqq \theta \leqq {180}^\circ$とする.

(1)$t=0$のときの$\cos \theta$の値を求めよ.
(2)$f(t)$は$t$の$4$次式となる.それを降べきの順に整理して書け.
(3)$f(t)$は
\[ f(t)=(t+m)(t+n)(t^2+at+b) \quad (\text{ただし,$m,\ n,\ a,\ b$は整数}) \]
の形に書ける.$f(t)$をこの形に書き表せ.
(4)$-1<t<3$の範囲内で,$\theta={90}^\circ$となるときの$t$の値を求めよ.
(5)左側からの極限$\displaystyle \lim_{t \to 3-0} \cos \theta$の値を求めよ.
東京医科大学 私立 東京医科大学 2014年 第1問
次の$[ ]$を埋めよ.

(1)座標平面上の点$\displaystyle \mathrm{A} \left( 1,\ \frac{1}{4} \right)$を通る$2$曲線$\displaystyle C_1:y=\frac{1}{4}x^2$,$C_2:ax^2+by^2=1$($a,\ b$は正の定数)を考える.点$\mathrm{A}$における$2$曲線$C_1,\ C_2$の接線が直交するとき
\[ a=\frac{[ア]}{[イ]},\quad b=\frac{[ウエ]}{[オ]} \]
である.
(2)座標平面の点$\mathrm{P}(x,\ y)$が円$\displaystyle C:(x-1)^2+(y-1)^2=\frac{1}{16}$上を動くとき,式
\[ \frac{x}{y}+\frac{y}{x} \]
がとる最大値を$M$とすれば
\[ M=\frac{[カキ]}{[クケ]} \]
である.
東京医科大学 私立 東京医科大学 2014年 第3問
座標平面の曲線$C:y=\sqrt{x^2+9}$上の点$\mathrm{A}(4,\ 5)$における接線を$L$とする.

(1)接線$L$の方程式は
\[ y=\frac{[ア]}{[イ]}x+\frac{[ウ]}{[エ]} \]
である.
(2)曲線$C$,接線$L$および$y$軸とで囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積を$V$とすれば
\[ V=\frac{[オカ]}{[キ]} \pi \]
である.
東京医科大学 私立 東京医科大学 2014年 第4問
座標平面上の$2$つの曲線
\[ C_1:y=ax^2+1,\quad C_2:x=ay^2+1 \quad (a \text{は正の定数}) \]
を考える.

(1)$2$つの曲線$C_1,\ C_2$が$2$点で交わるような正の定数$a$の値の範囲は
\[ 0<a<\frac{[ア]}{[イ]} \]
である.
(2)$\displaystyle a=\frac{3}{16}$のとき,曲線$C_1$と曲線$C_2$とで囲まれた図形の面積を$S$とすれば
\[ S=\frac{[ウエ]}{[オカ]} \]
である.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2014年 第2問
三角形$\mathrm{OAB}$の各頂点の座標は$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 4)$,$\mathrm{B}(-4,\ 6)$である.

(1)頂点$\mathrm{A}$を通って三角形$\mathrm{OAB}$の面積を$2$等分する直線の方程式を求めよ.
(2)三角形$\mathrm{OAB}$の重心$\mathrm{G}$の座標を求めよ.
(3)重心$\mathrm{G}$から辺$\mathrm{AB}$に引いた垂線と辺$\mathrm{AB}$の交点を$\mathrm{H}$とするとき,$\mathrm{H}$の座標を求めよ.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2014年 第5問
$y=f(x)=x^3-4x$上の点$(a,\ a^3-4a)$で$f(x)$に接する直線がこの接点以外で交わるとする.その交点の座標を求めよ.また,その$y$座標が正となるための$a$の条件を求めよ.
東京都市大学 私立 東京都市大学 2014年 第1問
次の問に答えよ.

(1)$a$を正の実数とするとき,$x$の方程式$\displaystyle \left( \log_{10} \frac{x}{a} \right)(\log_{10}ax)=\log_{10}a$が解をもつような$a$の範囲を求めよ.
(2)媒介変数$t$を用いて半直線が$\left\{ \begin{array}{l}
x=1+2t \\
y=1+3t
\end{array} \right. (t \geqq 0)$と表されている.$xy$平面上の点$(3,\ 0)$との距離が最小となるような,半直線上の点の座標を求めよ.
(3)袋の中に$10$個の球があり,そのうち赤球は$x$個,白球は$(10-x)$個である.この袋から球を同時に$3$個取り出す.$3$個とも赤球である確率が$\displaystyle \frac{1}{30}$であるときの$x$の値を求めよ.
東京都市大学 私立 東京都市大学 2014年 第4問
楕円$x^2+3y^2=2$を$C_1$とし,円$x^2+y^2=1$を$C_2$とする.このとき,次の問に答えよ.

(1)$C_1$を図示せよ.
(2)$C_1$と$C_2$との$4$つの交点の座標は,$(p,\ q)$,$(-p,\ q)$,$(-p,\ -q)$,$(p,\ -q)$と表される.$p,\ q$を求めよ.ただし,$p>0$,$q>0$とする.
(3)楕円$C_1$で囲まれた図形のうち,$0 \leqq x \leqq p$となる部分の面積を求めよ.ただし,$p$は$(2)$で求めたものとする.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。