タグ「座標」の検索結果

87ページ目:全2097問中861問~870問を表示)
獨協医科大学 私立 獨協医科大学 2014年 第5問
関数$f(x)=2x+\cos x$がある.$xy$平面上の曲線$y=f(x)$の$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の部分を$C$とし,$C$と直線$y=2x$,および直線$x+2y=2$で囲まれた領域を$D$とする.領域$D$を直線$y=2x$の周りに$1$回転してできる立体の体積を求めよう.
(図は省略)

$C$上の点$\mathrm{P}(t,\ f(t))$から直線$y=2x$に下ろした垂線と直線$y=2x$との交点を$\mathrm{Q}$とする.
線分$\mathrm{PQ}$の長さは
\[ \frac{|\cos t|}{\sqrt{[ア]}} \]
であり,点$\mathrm{Q}$の$x$座標は
\[ t+\frac{[イ]}{[ウ]} \cos t \]
である.これから,$\mathrm{OQ}=s$とおくと
\[ s=\sqrt{[エ]} \left( t+\frac{[イ]}{[ウ]} \cos t \right) \]
である.
$f^\prime(x)=2-\sin x>0$なので$f(x)$は増加する.よって,求める体積$V$は

$\displaystyle V=\int_{\frac{2 \sqrt{5}}{5}}^{\frac{\sqrt{5} \pi}{2}} \pi \mathrm{PQ}^2 \, ds$

$\displaystyle \quad\, =\frac{\sqrt{[オ]} \pi}{[カ]} \int_0^{\frac{\pi}{2}} \left( \cos^2 t-\frac{[キ]}{[ク]} \cos^2 t \sin t \right) \, dt$

$\displaystyle \quad\, =\frac{\sqrt{[ケ]} \pi^2}{[コサ]}-\frac{[シ] \sqrt{[ス]} \pi}{[セソ]}$
である.
成城大学 私立 成城大学 2014年 第2問
直線$\ell:y=2x+1$と$2$点$\mathrm{A}(1,\ 2)$,$\mathrm{B}(4,\ 1)$がある.

(1)直線$\ell$上にあり,$2$点$\mathrm{A}$,$\mathrm{B}$から等距離にある点$\mathrm{C}$の座標を求めよ.
(2)点$\mathrm{C}$を中心として,線分$\mathrm{AB}$に接する円の方程式を求めよ.
星薬科大学 私立 星薬科大学 2014年 第5問
$2$つの放物線$C_1:y=x^2-3$,$C_2:y=x^2-6x+9$と,$C_1$,$C_2$の両方に接する直線$\ell$について次の問に答えよ.

(1)$C_1$と$C_2$との交点の座標は$([$42$],\ [$43$])$である.
(2)$C_1$と$\ell$との接点の座標は$\displaystyle \left( \frac{[$44$]}{[$45$]},\ -\frac{[$46$][$47$]}{[$48$]} \right)$であり,$C_2$と$\ell$との接点の座標は$\displaystyle \left( \frac{[$49$]}{[$50$]},\ \frac{[$51$]}{[$52$]} \right)$である.
(3)$C_1$と$C_2$および$\ell$とで囲まれた部分の面積は$\displaystyle \frac{[$53$]}{[$54$]}$である.
星薬科大学 私立 星薬科大学 2014年 第6問
空間内の$2$点$(-1,\ 3,\ -2)$,$(-3,\ 2,\ -1)$を通る直線$\ell$がある.$x$軸上の点$\mathrm{P}$と$\ell$上の点$\mathrm{Q}$との距離が最小になるときの$\mathrm{P}$の座標は$(-[$55$],\ 0,\ 0)$,$\mathrm{Q}$の座標は$\displaystyle \left(-[$56$],\ \frac{[$57$]}{[$58$]},\ \frac{[$59$]}{[$60$]} \right)$であり,その距離の最小値は$\displaystyle \frac{\sqrt{[$61$]}}{[$62$]}$である.
昭和薬科大学 私立 昭和薬科大学 2014年 第3問
点$\mathrm{A}(2,\ 1,\ -1)$を通り,ベクトル$\overrightarrow{u}=(2,\ 1,\ 1)$に平行な直線$\ell$上の点を$\mathrm{P}$とし,点$\mathrm{B}(-4,\ -2,\ 2)$を通り,ベクトル$\overrightarrow{v}=(-1,\ 1,\ 1)$に平行な直線$m$上の点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$の座標を媒介変数$s$を用いて,また,点$\mathrm{Q}$の座標を媒介変数$t$を用いて表せ.ただし,$s=1$のとき$\mathrm{P}(4,\ 2,\ 0)$,$t=1$のとき$\mathrm{Q}(-5,\ -1,\ 3)$とする.
(2)$\overrightarrow{\mathrm{PQ}}$が$2$直線$\ell$と$m$に直交するときの$s$と$t$の値を求めよ.
(3)$2$直線$\ell$と$m$との間の距離を求めよ.
東京薬科大学 私立 東京薬科大学 2014年 第1問
次の問いに答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$(\sqrt{2}+\sqrt{3}+\sqrt{7})(\sqrt{2}+\sqrt{3}-\sqrt{7})(\sqrt{2}-\sqrt{3}+\sqrt{7})(-\sqrt{2}+\sqrt{3}+\sqrt{7})=[アイ]$
(2)関数$f(x)=x^3+ax^2+bx+5$が,$x=-2$で極大値を,$x=1$で極小値をとるなら,
\[ a=\frac{[$*$ ウ]}{[エ]},\quad b=[$*$ オ] \]
である.
(3)座標平面上に原点$\mathrm{O}$と$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$があり,点$\mathrm{P}$は$t$を実数として,
\[ \overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}} \]
を満たす.$|\overrightarrow{\mathrm{OP}}|$が最小になるのは$\displaystyle t=\frac{[カキ]}{[クケ]}$のときである.
このとき$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{AB}}$のなす角は${[コサ]}^\circ$である.
(4)$1$階,$2$階,$4$階,$5$階にだけ停止する荷物用のエレベーターで,$1$階にある$10 \, \mathrm{kg}$,$20 \, \mathrm{kg}$,$30 \, \mathrm{kg}$の$3$個の荷物の全てを上階に運ぶ.一つの階に運ばれる荷物が複数個や$0$個になることを認めると,荷物の運び方は$[シス]$通りである.$10 \, \mathrm{kg}$を$1$階分上げるごとに$1$単位の電力が必要であると仮定すると,$3$個の荷物を上げるために必要な電力の期待値は$[セソ]$単位である.
北里大学 私立 北里大学 2014年 第1問
次の各文の$[ ]$にあてはまる答を求めよ.

(1)$\displaystyle \frac{7}{3+\sqrt{2}}$の小数部分を$a$とするとき,$a$の値は$[ア]$,$\displaystyle a^2+\frac{1}{a^2}$の値は$[イ]$である.
(2)$1$個のさいころを$4$回続けて投げるとき,$4$回とも$1$の目が出る確率は$[ウ]$である.また,$1$の目がちょうど$2$回出る確率は$[エ]$である.
(3)$k$を正の定数とし,$2$つの放物線$y=-x^2+3x-2k$,$y=x^2+2kx+4k$をそれぞれ$C_1$,$C_2$とする.$C_1$の頂点の$y$座標が$1$であるとき,$k$の値は$[オ]$である.$C_2$が$x$軸と接するとき,$k$の値は$[カ]$である.また,$x$軸が$C_1$と$C_2$のどちらとも共有点をもたないような定数$k$の値の範囲は$[キ]$である.
(4)半径が$3$である球を$A$,底面の円の半径が$6$である円錐を$B$とする.このとき,球$A$の体積は$[ク]$である.また,球$A$が円錐$B$に図のように内接するとき,円錐$B$の表面積は$[ケ]$である.
(図は省略)
東京女子大学 私立 東京女子大学 2014年 第2問
実数$t$に対して$\displaystyle f(t)=\frac{t+|t|}{2}$とおく.このとき座標平面において不等式
\[ \frac{1}{4}x^2-1 \leqq y \leqq f(2-x^2) \]
が表す領域を図示し,その面積を求めよ.
東京女子大学 私立 東京女子大学 2014年 第6問
座標平面上の点$\mathrm{P}(a,\ b)$が条件$2a^2+b=1$をみたしながら動くとき,点$\mathrm{Q}(-4a-b,\ -a)$の描く軌跡を座標平面内に図示せよ.
東京女子大学 私立 東京女子大学 2014年 第7問
座標空間内の$2$点$\mathrm{A}(1,\ -2,\ -1)$,$\mathrm{B}(-5,\ -4,\ 3)$を通る直線を$\ell$とおく.以下の設問に答えよ.

(1)$\ell$は点$\mathrm{C}(-2,\ -3,\ 1)$を通ることを示せ.
(2)$\mathrm{O}$を原点として$\mathrm{C}$とは異なる$\ell$上の点$\mathrm{D}$が$\mathrm{OD}=\mathrm{OC}$をみたすとき,$\mathrm{D}$の座標を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。