タグ「座標」の検索結果

86ページ目:全2097問中851問~860問を表示)
九州産業大学 私立 九州産業大学 2014年 第2問
直線$-3x+y-5=0$を$\ell_1$,直線$x+3y-15=0$を$\ell_2$,直線$-x+2y-5=0$を$\ell_3$とする.また,直線$\ell_1$と直線$\ell_2$の交点を$\mathrm{A}$,直線$\ell_2$と直線$\ell_3$の交点を$\mathrm{B}$,直線$\ell_1$と直線$\ell_3$の交点を$\mathrm{C}$とし,点$\mathrm{A}$から線分$\mathrm{BC}$へ下ろした垂線を$\mathrm{AD}$とする.

(1)点$\mathrm{A}$の座標は$([ア],\ [イ])$,点$\mathrm{B}$の座標は$([ウ],\ [エ])$,点$\mathrm{C}$の座標は$([オカ],\ [キ])$である.
(2)垂線$\mathrm{AD}$の長さは$\sqrt{[ク]}$であり,点$\mathrm{D}$の座標は$([ケ],\ [コ])$である.
(3)$\triangle \mathrm{ABC}$の面積は$[サ]$である.
(4)$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[シス]}-\sqrt{[セ]}$である.
九州産業大学 私立 九州産業大学 2014年 第3問
放物線$y=x^2-4x+3$を$C$とする.放物線$C$と$x$軸との交点を$x$座標の小さい順に$\mathrm{P}$,$\mathrm{Q}$とし,点$\mathrm{Q}$における放物線$C$の接線を$\ell$とする.

(1)放物線$C$の頂点の座標は$([ア],\ [イウ])$である.
(2)点$\mathrm{P}$の座標は$([エ],\ 0)$,点$\mathrm{Q}$の座標は$([オ],\ 0)$である.
(3)接線$\ell$の方程式は$y=[カ]x-[キ]$である.
(4)放物線$C$と$x$軸で囲まれた部分の面積は$\displaystyle \frac{[ク]}{[ケ]}$である.
(5)直線$y=-2x+k$が放物線$C$に接するとき,$k=[コ]$であり,この直線と接線$\ell$,および放物線$C$で囲まれた部分の面積は$\displaystyle \frac{[サ]}{[シ]}$である.
九州産業大学 私立 九州産業大学 2014年 第4問
$4$点$\mathrm{A}(-\sqrt{3},\ \sqrt{3},\ 1)$,$\mathrm{B}(\sqrt{3},\ -\sqrt{3},\ 1)$,$\mathrm{C}(-3,\ -3,\ 1)$,$\mathrm{D}$を頂点とする四面体$\mathrm{ABCD}$について考える.ただし,点$\mathrm{D}$の$z$座標は負の数であり,$|\overrightarrow{\mathrm{AD}}|=|\overrightarrow{\mathrm{BD}}|=|\overrightarrow{\mathrm{CD}}|=\sqrt{17}$とする.また,原点を$\mathrm{O}$とする.

(1)$|\overrightarrow{\mathrm{AB}}|=[ア]$である.
(2)点$\mathrm{D}$の座標は$[イ]$である.
(3)点$\mathrm{A}$を通り,$z$軸に垂直な平面の方程式は$[ウ]$である.
(4)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面上にあり,点$\mathrm{D}$との距離が最小となる点の位置ベクトルを$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$で表すと$[エ]$である.
(5)四面体$\mathrm{ABCD}$の体積は$[オ]$である.
北海学園大学 私立 北海学園大学 2014年 第1問
$x$の$2$次関数$y=x^2-(2a^2-4a)x+a^4-4a^3+3a^2+1$のグラフについて,次の問いに答えよ.ただし,$a$は$0<a<2$を満たす実数とする.

(1)頂点の座標を求めよ.
(2)頂点が直線$y=-x$上にあるような$a$の値を求めよ.
(3)原点と頂点を通る直線の傾きの絶対値が$1$以上となるような$a$の値の範囲を求めよ.
北海学園大学 私立 北海学園大学 2014年 第1問
次の各問いに答えよ.

(1)$2$つの不等式$x^2-x-6<0$と$x^2-x-2>0$を同時に満たす$x$の値の範囲を求めよ.
(2)放物線$y=x^2-2x+2$を$x$軸に関して対称移動した後に,$x$軸方向に$3$,$y$軸方向に$4$だけ平行移動した放物線の頂点の座標を求めよ.
(3)$0^\circ \leqq \theta \leqq {90}^\circ$のとき,$\displaystyle \frac{2}{1+\tan^2 \theta}+4 \cos \theta-2 \sin^2 \theta-1=0$を満たす$\theta$の値を求めよ.
東北学院大学 私立 東北学院大学 2014年 第3問
$a$を負の定数とし,放物線$y=a(x+1)(x-3)$を$C$とする.$C$上の点$\mathrm{P}(2,\ -3a)$における$C$の接線$\ell$と$x$軸との交点を$\mathrm{A}$とするとき,次の問いに答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)直線$\ell$の方程式と点$\mathrm{A}$の座標を求めよ.
(2)三角形$\mathrm{OAP}$の面積が$\displaystyle \frac{7}{4}$であるとき,$a$の値を求めよ.
(3)$(2)$の$a$に対し,線分$\mathrm{OP}$,$y$軸および放物線$C$で囲まれた図形の面積$S$を求めよ.
獨協医科大学 私立 獨協医科大学 2014年 第1問
次の問いに答えなさい.

(1)$a$を正の定数とし,$x$についての$2$つの不等式
$\log_3 (x+2a)+\log_3 (x+3a)<\log_3 10ax \cdots\cdots①$
$\log_3 (3x-4)+\log_3 (3x+2)<2 \log_9 (6x-5)+1 \cdots\cdots②$
を考える.
$①$の解は
\[ [ア]a<x<[イ]a \]
である.
$②$の解は
\[ \frac{[ウ]}{[エ]}<x<\frac{[オ]}{[カ]} \]
である.
$①,\ ②$をともに満たす実数$x$が存在するとき,$a$のとり得る値の範囲は
\[ \frac{[キ]}{[ク]}<a<\frac{[ケ]}{[コ]} \]
である.
(2)放物線$\displaystyle C:y=\frac{1}{2}x^2$上に$2$点$\mathrm{P}$,$\mathrm{Q}$がある.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p,\ q$としたとき,$p,\ q$は$q<p$を満たす整数で,$p>0$,$p+q$は正の偶数とする.
また,点$\mathrm{P}$における放物線$C$の接線を$\ell$,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線を$m$とし,直線$\ell,\ m$が$x$軸の正の向きとなす角をそれぞれ$\displaystyle \alpha,\ \beta \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$,$2$直線$\ell,\ m$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.
$p=5,\ q=1$のとき
\[ \tan \alpha=[サ],\quad \tan \beta=[シ] \]
であり
\[ \tan \theta=\frac{1}{[ス]} \]
である.
また,$\displaystyle \tan \theta=\frac{1}{7}$を満たす整数$p,\ q$の組$(p,\ q)$をすべてあげると,
\[ (p,\ q)=([セ],\ [ソ]),\ ([タチ],\ [ツテ]),\ ([トナ],\ [ニヌネ]) \]
である.ただし,$[セ]<[タチ]<[トナ]$とする.
獨協医科大学 私立 獨協医科大学 2014年 第4問
行列$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$で表される$1$次変換$f$について考える.点$\mathrm{P}_0$の座標を$(1,\ 0)$とし,$n$を正の整数とするとき,$f$によって点$\mathrm{P}_{n-1}$が移される点を$\mathrm{P}_n$とする.また,$\displaystyle \sum_{k=0}^{n-1} \overrightarrow{\mathrm{OP}_k}=\overrightarrow{\mathrm{OQ}_n}$となる点$\mathrm{Q}_n$の座標を$(x_n,\ y_n)$とし,$n \to \infty$のときに$x_n,\ y_n$がともに収束する場合の点$\mathrm{Q}_n$の極限値$\displaystyle \mathrm{Q} \left( \lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n \right)$を求めよう.

(1)$\displaystyle r=\frac{1}{2}$,$\displaystyle \theta=\frac{\pi}{3}$のとき,$\displaystyle A^3=\frac{[アイ]}{[ウ]} \left( \begin{array}{cc}
[エ] & [オ] \\
[オ] & [エ]
\end{array} \right)$であり,$\mathrm{P}_7$の座標は$\displaystyle \left( \frac{[カ]}{[キクケ]},\ \frac{\sqrt{[コ]}}{[キクケ]} \right)$である.
(2)$E-A$が逆行列をもたない$r,\ \theta (r \geqq 0,\ 0 \leqq \theta<2\pi)$の条件は,$r=[サ]$かつ$\theta=[シ]$である.ただし,$E$は単位行列とする.
$E-A$が逆行列をもつとき,$n$を$2$以上の整数とすると
$(E-A)(E+A+A^2+\cdots +A^{n-1})=E-A^n$より
\[ E+A+A^2+\cdots +A^{n-1}=(E-A)^{-1}(E-A^n) \]
また,$\displaystyle (E-A)^{-1}=\frac{1}{r^2-2r \cos \theta+1} \left( \begin{array}{cc}
1-r \cos \theta & -r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array} \right)$であるから
$\displaystyle (E-A)^{-1}(E-A^n)=\frac{1}{r^2-2r \cos \theta+1}T$とすると
\[ T=\left( \begin{array}{cc}
1-r \cos \theta-r^n [ス]+r^{n+1} [セ] & -r \sin \theta+r^n [ソ]-r^{n+1} [タ] \\
r \sin \theta-r^n [ソ]+r^{n+1} [タ] & 1-r \cos \theta-r^n [ス]+r^{n+1} [セ]
\end{array} \right) \]
である.ただし,$[ス]$,$[セ]$,$[ソ]$,$[タ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \ \sin n\theta \quad \nagamaruni \ \cos n\theta \quad \nagamarusan \ \sin (n-1) \theta \quad \nagamarushi \ \cos (n-1) \theta \quad \nagamarugo \ \sin (n+1) \theta \quad \nagamaruroku \ \cos (n+1) \theta \]
$0 \leqq r<1$のとき,$\lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n$はともに収束し,さらに$\displaystyle \theta=\frac{\pi}{3}$とすると,
\[ \mathrm{Q}=\left( \frac{[チ]-r}{[ツ]-2r+[テ]r^2},\ \frac{\sqrt{[ト]}r}{[ツ]-2r+[テ]r^2} \right) \]
である.
広島工業大学 私立 広島工業大学 2014年 第2問
曲線$C:y=-5x^3+21x$と直線$\ell:y=x$の交点のうち$x$座標が正である点を$\mathrm{A}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$の座標を求めよ.
(2)$C$上の点$\mathrm{P}$の$x$座標を$t$とするとき,$\triangle \mathrm{OAP}$の面積$S$を$t$の式で表せ.ただし,$0<t<2$とする.
(3)$0<t<2$とするとき,$(2)$で求めた$S$の最大値とそのときの$t$の値を求めよ.
広島工業大学 私立 広島工業大学 2014年 第4問
$a$を定数とする.直線$\ell:y=6ax$,曲線$C:y=|3x^2-6x|$について,次の問いに答えよ.

(1)$\ell$と$C$の共有点が$3$個になるような$a$の範囲を求めよ.
(2)$\displaystyle a=\frac{1}{2}$とし,$\ell$と$C$の共有点の$x$座標を小さい順に$x_1,\ x_2,\ x_3$とする.このとき,$\ell$と$C$で囲まれた部分のうち$x$座標が$x_2$以上の部分の面積を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。